THEORETICAL AND EXPERIMENTAL INVESTIGATION
OF LEAKAGE FLOW IN GEAR PUMPS

Ibrahim SALEH +

M.Galal RABIE ++

ABSTRACT

The leakage losses in gear pumps, represent a special interest in engineering service. Herein, the prediction of leakage flow, as related to the pump geometry and fluid properties, has been assumed. Theoretical analysis has been developed to estimate the leakage flow through the side and radial clearances, during meshing process, and by squeezing of the trapped fluid. Theoretical and experimental analysis showed a satisfactory agreement between the estimated and the measured values.

Introduction

Gear pumps, as positive displacement pumps, are of special importance in hydraulic service due to their simple construction, design and relatively low prices. In spite of these advantages, the high leakage ability limits these pumps for low pressure use. The excessive increase of the internal clearances deteriorates the pump performance. To estimate the clearances allowances during the pump service, a theoretical and experimental study have been developed. Detail analysis of the leakage sources enable the user to estimate the limits of pump service life based on the clearances allowances that affect the pump performance.

Theoretical Investigation

Fluid leaks, for spur gear pumps, from the high pressure side to the suction one through, [1,3]

- radial clearances, between the pump gears and casing,
- side clearances, between the gears sides and casing,
- backlash losses, during the meshing process,
- squeezed fluid, at the end of meshing process.

a) Radial clearance leakage

To estimate the radial clearance leakage between the pump gears and casing, one dimensional steady laminar developed flow, has been assumed. The pressure drop per tooth is mainly due to local losses at both entrance and exit of the radial clearance p_1, and friction losses between the pump casing and teeth crest p_f. The friction losses pressure drop may be estimated by assuming one dimensional laminar flow between two parallel plates.

+ Col. Dr. Eng., Mechanical power depart, Military Technical College, Cairo.
++ Col. Dr. Eng., Military Research Authority, Cairo.
with moving boundary at linear velocity \(u \), Fig. 1, \([2, 4]\)

\[
P_f = 12 \frac{z \mu (v - u/2)}{e_r^2}, \tag{1}
\]

where \(z \) is the number of teeth per gear, \(\mu \) is the fluid dynamic viscosity, \(v \) is leakage mean velocity, and \(e_r \) is radial clearnce.

The local losses pressure drop, between the pump inlet and outlet, may be assumed as,

\[
P_1 = z \frac{(k_i + k_e)\rho v^2}{2}, \tag{2}
\]

where \(k_i \) and \(k_e \) are the local loss coefficient at inlet and exit of the tooth, and \(\rho \) is the fluid mass density.

In this case the pressure difference between the pump inlet and exit \(P_p \) is the sum of pressure drops across the teeth,

\[
P_p = P_f + P_1 \tag{3}
\]

The leakage flow velocity \(v \) may be calculated from equation (3). For two gears pump, the radial leakage flow may be written as,

\[
q_r = 2 z \frac{e_r (v - u/2) b}{\rho }, \tag{4}
\]

where \(b \) is the gear width.

Equation (4) may be written in dimensionless form as, \([1]\),

\[
\left(\frac{p}{\rho u^2/2} \right) = 2 z \left(\frac{v}{u} - 1/2 \right) \left(\frac{\mu}{\rho e_r u} \right) \left(\frac{b}{e_r} \right) + \left(k_i + k_e \right) \left(\frac{v}{u} \right)^2 \tag{5}
\]

b) Side clearnce leakage

The side leakage losses take place between both the teeth, and gears sides, \(q_{s1} \) and \(q_{s2} \) successively. The side leakage loss \(q_{s1} \) can be calculated by using equation (1), in neglecting the tangential velocity term \((u/2) \).

The upper and lower parts of the gears are moving in opposite directions. The leakage \(q_{s2} \) may be assumed to be proportional to the teeth lose,as, \(8 \).

\[
q_{s2} = K q_{s1} \tag{6}
\]

where \(K \) is assumed to be,

\[
K = \frac{H}{R_r} \tag{7}
\]

with \(H \) is tooth height, and \(R_r \) is the root radius of the gear.

The leakage flow velocity \(v_s \) may be calculated from equation (1), in neglecting the term \((u/2) \). The side leakage loss \(q_s \) may be written as,

\[
q_s = 2 (1 + K) v_s H e_s \tag{8}
\]

where \(e_s \) the side clearance.
c) Backlash leakage losses

During the teeth meshing process, a part of the fluid leaks from the high pressure side to the low pressure one through the contact area of meshed teeth. This part of losses may be assumed to be dependant on the fluid viscosity, pressure, as well as the teeth geometry, life and surface finish, 2.

The backlash loss may be written as,

\[q_B = K_B z n p_p \]
(9)

where \(q_B \) is the backlash loss, \(n \) is the pump speed rps, and \(K_B \) is a coefficient, has to be estimated experimentally. For now pumps this part of losses is of negligible value.

d) Squeezed Fluid

As the gear rotates, it is observed that, during an incremental time, a small quantity of fluid is completely trapped by the meshed teeth. Further rotation of the gears, results in squeezing the trapped fluid. This part of squeezed fluid has been estimated experimentally, by measuring the change of enclosed volume between the meshed teeth, as a function of the gear angular rotation. A gear plastic model has been used to estimate this variation of trapped volume, [1]. The squeezed part \(q_{sq} \) may be taken to be,
The theoretical pump discharge can be calculated as

\[Q_t = V_g n \]

where \(V_g \) is the pump geometric volume, which is the discharged volume per revolution, and \(n \) is the pump speed per second.

e) Total leakage losses

The total leakage losses may be calculated as the sum of the losses in different parts of the pump. From equations 4, 8, 9, 10 the total losses \(q \) is

\[q = q_r + q_s + q_B + q_{sq} \]

Experimental Investigation

To verify the proposed leakage equations, derived in the theoretical part, an experimental study has been carried out for a spur gear pump having the following dimensions:

- Gear external diameter \(D_{ex} = 0.035 \text{ m} \)
- Gear width \(b = 0.02 \text{ m} \)
- Tooth height \(H = 0.0055 \text{ m} \)
- Tooth mean width \(b_t = 0.0025 \text{ m} \)
- Number of teeth \(z = 12 \)
- Geometric volume \(V_g = 9.52 \times 10^{-6} \text{ m}^3/\text{rev} \)
- Radial clearance \(e_r = 0.75 \times 10^{-6} \text{ m} \)
- Side clearance \(e_s = 0.1 \times 10^{-3} \)
- Oil viscosity \(= 0.0176 \text{ N.s/m}^2 \)
- Pump speed \(n = 1200 \text{ and } 1500 \text{ rpm} \)

The pump has two gears mounted in the casing between dplates, to reduce the side clearance as the outlet pressure increases. Due to the difficulties of estimating the side clearances as a function of the pumping pressure, the pressure compensating action on the side plates has been blocked. The maximum value of side clearances has been taken into consideration, that results in higher values of both measured and calculated side leakages.

The pump internal leakage has been evaluated by measuring the actual pump flow rates for different speeds and loading pressures. The leakage was calculated as the difference between the measured and the theoretical flow rates, (Eq. 11).

The measuring test stand is given in Fig.2. The driving motor speed is controlled by means of a servo system which allowed to have a constant pump speed, independent of the pumping pressures. The outlet pressure oscillation, due to flow pulsation, has been damped out by means of fitting a hydraulic accumulator in the measuring circuit. The flow rates have been measured by a calibrated orifice. For small values of flow rates the volume measuring method has been used. Experimental results are given in Fig.3. On the same figures, the theoretical calculated results are given, also, that show satisfactory agreement.
Conclusions

The leakage losses in gear pumps are due to the radial clearance, side clearance, teeth backlash, and fluid squeezing at and of meshing process. The proposed method of estimating these sources of leakage losses, has shown that the radial and side clearances are only important to evaluate the pump volumetric losses. Theoretical and experimental analysis show a satisfactory agreement, between the estimated and measured values. It is of economical interest to estimate the pump performance and service life on theoretical base by measuring the pump clearances.
Fig. 3. Experimental and Calculated Leakages

References

