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ABSTRACT 

This work is concerned with the study and use of dry friction dampers for : 
:vibration control. First, the characteristics of the friction damper are 
'determined. Then, the friction damper is applied to a hinged-hinged bean,
The amplitude-frequency response for a harmonic excitation is determined 
both theoretically and experimentally. For linearization of the equations . 
bf motion, the friction force is replaced by an equivalent linear viscous : 
force dissipating the same energy per cycle. The results obtained from 
experiments and theory are in good agreement, and it is shown that, by a 
suitable choice of the ratio of the friction force to applied force' the 
*friction damper can be an effective damping device. 

INTRODUCTION 

Friction damping is always present in assembled structures, but it is very 
difficult to quantity its effect. The main reasons for that are the varia-
tion in material properties, normal force and the non linearity of equat-
ions. Amongst the few references on the friction damping the works dealing' 
With slip in joints [6,7,8,9,12,14,15], and a paper on clamped beam damped 
at the free end with a friction damper [10], may be mentioned. 

Here an inexpensive commerical friction damper has been studied. Firstly 
the behaviour of the friction force under dynamical excitation is invest-
igated experimentally, and a method is described for the determination of 
the characteristics of the friction damper. Then as beam structures are 
used for supporting machines [1,11,13], the friction damper has been used 
to improve the dynamic behaviour of a hinged-hinged beam. Experimental and 
theoretical results are presented and are shown to be in satisfactory agree 
ment. 

DETERMINATION OF THE CHARACTERISTICS OF THE DRY FRCTION DAMPER 

Friction Damper: 
.4„ 

The damper is included in a system consisting of a mass m, and of a spring 
of equivalent stiffness k, as shown in Fig. 2. To obtain a continuous 
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harmonic response without pauses, the amplitude of the applied force must 
be higher 	than the friction force, Thus, the nonlineaity of the fric- 
tion 

 
 force does not disturb significantly the harmonic form of the applied 

force and the response of the system, therefore a heavy mass is used. 
The mass is supported by two smooth teflon (P.T.F.E.) rollers, rolling on 
a horizontal smooth plane surface. The mass is excited by an electrody- ' 
namic force generator which can give a harmonic force with amplitudes up 
to 500 Newtons. The force generator is connected to the mass through a 
piezoelectric force pickup which measures the applied force amplitude. 
A piezoelectric accelerometer is fixed on the mass to measure the accel- 

. eration of the system. The system response which is the ratio of the 
acceleration amplitude to the applied force in dB is plotted against fre- ' 
quency in Hz. The system response is determined in three cases which will 
permit the determination of the system characteristics : 

: a) without the damper, 
b) with the damper fixed to the system and blocked by using small exciting 

force, 
• c) with the damper fixed to the system, and for different magnitudes of 

the exciting force which are sufficient to produce slip in the damper. 

In both cases a) and b), the system is considered as a linear system with 
: equivalent linear viscous damping ; therefore the acceleration to force 
ratio is independent of the magnitude of the applied force, and there is 
no need to keep the amplitude of the force constant during the test. 
While in case c) the system response is dependent on the amplitude of 

the applied force, it is therefore necessary to keep the magnitude const- 
ant during the frequency sweep test. 

Mathematical model of the system [2] , [ 13] , {4] 

	

The two degrees of freedom mathematical model which incorporate mass a, 	• 
spring of equivalent stiffness k, equivalent linear viscous damper c, and 
the friction damper represented by F, Nk and shown in Fig. 3, is used. It is assumed here that the motion of the system is continuous, harmonic and 

:without pauses. The equations of motion of the system with the friction 
force are non-linear. For linearization of the equations of motion the 
friction force is replaced by an equivalent linear viscous force [2] , [51: the coefficient of which is determined by equating the energy dissipated 
per cycle. The equivalent viscous damping coefficient is given by : 

4 F 
C = 	 
1 	10-151 

where 6 = x - x
1 is the relative displacement between the ends of the the 

.daer. The linearized equations of motion of the system are : 

mx+cx+c
1
(x - x

1)+kx-Pe- 
 j t 	

(2) 

N k x
l 
- c

1 
(x - x

1
) = 0 	 (3) 

The assumption of continuous harmonic motion, leads to a solution in the 
form : 

x = X ej ( Slt+0) and xl = X1 e
j(11.- t+0 ) 

• 1 	(4) 

: Substituting equations (4) into equations (2) and (3), we get the followinj 
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6 	 relations : 

2 
b - x2 - X 2  

1 

4 F  
X = 
1 	V Nk 

and 
2 

b 	cc .1 2 	oc 
(
X k

) 	= [; - (—a
b 2 	d 
) + 	- 	

2 	
+ () 

2 
a N 

where : 	
a = (1 - z 2 ) 2 + (2 4 z) 2 

b = 240c z 

d 4 F _ 
T P 

z = — 	e,= 
2mco 

Cr 

d = 1 -
:2 

(1 1 N(1  - z
2
)) 

For z = 1, the system response takes the form : 

2 
4 X k 	1 2 [ 2 	 24x. -) 	= (-2 4) 	+ 1 - 20C 	- () 2  

Since the term 2 
(
20(4

) 
	

is << 1, equation (8) reduces to 

X k 	1 - oc 
P 	2 4 

The damper will be blocked when x = x
1, from which we can determine the 

limiting frequency conditions for break-loose and break-in of the damper 
as : 

• 

z 	= [(1 + N) 	+ 4 4 (1 + N)+(z) 
2 
1,2  - 2  4  2 ] + 114 44 	2 	N 2 	

(10) 
4 	2 	2 Since 4 and 4 <A (7-,d equation (10),  is reduced to : 

1 z1,2 = 	oc 
+ N(1 + —) - 2 42 

the -ve sign corresponds to the break-loose condition, while the + ve sign 
corresponds to the break-in frequency. 

Results 

The system response with and without damper obtained experimentally for 
different magnitudes of the applied force are shown in Fig. 4. From the 
response of the system without damper the following characteristics are 

: determined : 

a) mass of the system m = 30 kg 
b) equivalent stiffness of the spring k = 8.1 x 104  P/m 
c) natural frequency of the system f = 8.27 Hz o  
d) equivalent viscous damping ratio of the system A41  = 0.01 

L.. 
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From the system response with the damper blocked-in the following charac-
teristics are determined : 

e) equivalent viscous damping ratio of the systeme;,=60.04 
! f) total stiffness of the system (N + 1) k = 2.04 x 10 N/m 
g) natural frequency of the system f1= 41.5 Hz 

From the response of the system slipping for P = 60 N and for P= 70 N and 
using equation (9) in the form : 

a1 -cc  
- 24m 
	at 	z = 1 	(12) 

we can determine : 

h) the friction force of the damper = 42,25 N 
ii) the damping ratio of the system Z, = 0.027. 

Using the previous results the system response for the above mentioned 
cases are calculated by using equation (7) and are shown in Fig.6. 

FRICTION DAMPER APPLIED TO A HINGED-HINGED BEAM 

:Mathematical model of the system 

The beam is modelled by using the finite element method as shown in Fig.6.: 
Each element of the beam has 2 nodes and each node has 2 degrees of free-
dom : displacement and rotation. If the beam is divided into n elements, 
the total number of degrees of freedom of the beam will be 2(n+1). An 
additional displacement degree of freedom is added due to the elasticity • 

:of the damper, therefore the total number of degrees of freedom of the 
system will be 2n + 3. 

:The friction damper force is replaced by an equivalent viscous one. The 
equivalent viscous damping coefficient is given by equation (1), where in 
this case the relative displacement between the ends of the damper is given 
by : 

S = w
a 	

w
2n+3 	 (13) 

:Since the damper is connected to the node a, and the exciting force acting 
at the node b, and taking into consideration the boundary conditions w

1
= 

 
fOgi-1) = 0, the displacement vector of the system can be arranged in the 

q 
	riq2 

where 

and 

	q1 	t 
= [0, w2, 02, w3, 	0

2(n+1) 

it 
q2 = [wa, wb' w2n+3.1 

If the harmonic exciting force has the form : 

L.. 

It 

(14)  

(15)  

(16)  
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P = (Pr + j P.1
) e

jStt 	 (17) 

The beam response is : 

q = (gr 	gi) eiS" 

	
(18) 

where the subscript r denotes the real part, and i the imaginary part. 

The equations of motion of motion of the system assuming that the beam 
itself has an equivalent structural damping q,  have the form : 

mll 

m21 

m12 

m22 

in- 
O 

° 

0 

c11

+ 
k11 

k21 

k12 k11 	12 

k21 	22 

k 11 q 	
1 	• 

1 0 (19) 1 

g2 

where 'coo  represents the submatrix of the beam stiffness corresponding to 

the coordinate q2
, while k22 

represents that of the beam and the damper. 

Equation (19) is divided into : 

2 
-k  11t llu 	glr 	

cl2r k11-  2m11 	k12-11-  m12 	'Z k12
=[0] 

2 

	

 k11 	SL m 	g 	vi k 	
k12

-  2.112  q2i  

	

6 11 	ll- 	ll li 	. l2 

[A] 

- 2k21 

2 
k21

- Am21 

lr 

gli 

cllr 

gli 

+ 

+ 

[q

2r 

 

[B] 

g2i 

k22- -'11122 

1k22 

= [0] 

-11(22 

2 
k22 

0 	-sici- 

[lc1 	
0 

(20) 

• 
• 

I:121 

q 

and 

2 
k21

- s1m21 

tk21 

i.e., 

where 

[Pr] 

P. 
1 

C 1 

q
lr 

f 	1 
q 	. 

= 	c 

+ RE] + ( II]] 

	

[1 

	0 	-1 

	

0 	0 	0 

	

-1 	0 	1 

72r1 

g2i 

P
r 
- 

P. 1 

(21).  

(22) 

and c is the equivalent viscous damping coefficient given by equation (1). 

L.. 	 "J 
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Substituting equation (20) into equation (21), we get : 

=[[E] + [H] - [D.] [Ail  [41  
Pr]
P.  

(23) 

Since the matrix H is function of the beam response, equation (23) have 
to be solved by using an iterative method. By using the relation given 
by equation (20) the order of the iterated matrix is always reduced to 
(6 x 6) whatever be the initial numbers of degrees of freedom of the sys-
tem. 

Experimental test 

A steel beam with E= 2 x 1011 N/m
2
, 3 p = 7800 kg/m and the dimensions 

(1 x 0.06 x 0.01 m) is attached to a rigid frame. The beam is excited by 
an electrodynamic force generator, and an accelerometer is fixed below 
the point of application of the force . 

At first the beam response without the damper is determined, from which 
the natural frequencies (see Table 1) and an equivalent structural damping 
factor of the beam?,  = 0.003 are determined. The mode shapes of the beam 
for the first three natural frequencies are shown in Fig. 7. Then the 
same damper used previusly is attached to the beam at a distance 3/8 L 
from the left end. The natural frequencies of the beam with the damper 
blocked-in (small excting force) and its mode shapes are obtained, (see 
Table 1 and Fig. 8). Then the beam is excited at a distance (5/8)L from 
the left end. 

The beam response for different magnitudes of applied force was determined, 
and are given in Fig.9. During each of the frequency sweep tests the amp-i 
litude of the applied force is kept constant. 

Results 

The natural frequencies of the beam without the damper are calculated 
using 16 finite elements. Then the natural frequencies of the beam are 
calculated by adding an additional stiffness at a distance (3/8)L, which 
represents the stiffness of the blocked-in damper. The resulting natural 
frequencies in both cases are given in Table 1, along with the experiment-
ql values. 

A program is written for solving equation (23) by matrix iteration on a 
mic-c-computer. The number of elements of the beam used is here limited 
to J due to the limited capacity of the memory of the computer. By using 
equation (21) the order of the iterated matrix is reduced from (14 x 14) 
to (6 x 6) only. At first, the beam responses are calculated using equa-
tion (23) and puting F = 0 and 1,= 0.003. 

Then the beam responses are calculated using equation (23) and considering 
the damper fixed at a distance (3/8)L from the left end, the friction force 
•= 42.5 Newtons and 1,=, 0.003, and the force applied at a distance 5/8L 
equals to 1,40,60 and 63 Newtons. The results are given in Fig.10. 

: The beam responses obtained theoretically and experimentally show that the 
• friction damper as applied here can be very effective. The comparison of 
. the experimental response Fig. 9 and the theoretical one Fig.10 shows 

"J _ 	_. 
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that the linearized analysis can give a fair prediction of the beam res-
ponse. The frictionally damped beam has acceptable finite response over 
an excitation frequency range which includes a number of undamped natural • 
frequencies, as in Fig.9. It may also be observed that the natural freq-
uencies of the structure get altered considerably, when the friction dam- .  
per is blocked. At these natural frequencies, the friction damper is qu- :  
ite effective in limiting the response, though it is higher than the or-
iginal structure's response. 

CONCLUSION 

An inexpensive friction damper has been used to demonstrate its effective 
use in controlling vibrations of a simple structure.For the damper under con- 

' sideration it has been observed from the experimental results, that the 
friction force can be considered as independent of the frequency and the 
amplitude of the exciting force, in the range studied. From frequency 
sweep tests, the procedure of determining the characteristics of the fric-
tion damper is given. A finite element model has been used, to determine: 

: the response of a hinged-hinged beam structure with the damper. The th-
eoretical results obtained show good agreement with experimental values 
and the damper is very effective in controlling the vibratory ampllitudes 

: near resonant conditions. 

Based on the studies made here for a hinged-hinged beam, it might prove 
that the friction dampers of the type considered here could find more 
practical application in control of structural vibration. 
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NOTATIONS 

a 	acceleration amplitude (m/sec
2
) 

c 	viscous damping coefficient (Nsec/m) 
E Young's modulus (N/m ) 
F 	friction force (N) 
f 	frequency (Hz) 
I 	second woment of area of the cross section of the 

beam (m ) 	 • 
k 	equivalent stiffness of the spring (N/m) 
k 	Stiffness matrix 
L beam length (m) 
m 	system mass (kg) 

E in] 	 mass matrix 
N damper support stiffness/k 

applied force amplitude (N) • •• 
clfq/c1 	displacement, velocity, and acceleration vectors 

of the beam 2 
S beam cross section area (m) 
w displacement (m) 
X 	displacement amplitude (m) 
z = — 	frequency ratio 

relative displacement between the ends of the dam- 

_ c 
	per (m) 

damping ratio 
cr 	

circular frequency of the force (1/sec) 
circular natural frequency3of the system (1/sec) 

? 	mass per unit volume (kg/m ) 
structural damping factor 

0 	phase angle 

L.. 	••• 
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Fig. 3 - Mathematical damper. model for mass and 
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Fig. 6 - Mathematical model of the beam. 

Table 1 : Natural frequencies of the system - Hz. 

Freq. No. 

Beam Beam + Damper (Blocked) 

Exp. Theor. Exp. Theor. 

1 22.8 22.8 65.2 69.2 

2 85.8 91.2 153.5 155.0 

3 187.5 204.0 205.0 216.0 

Mode 

2nd  Mode 

3
rd 

Mode 

Experimental 	
Experimental 

Theoretical 
------ Theoretical 

Fig. 7 - Mode shapes of the beam. 	Fig. 8 - Mode shapes of the bed,'.. 
(Without damper) 	

(With camper blocked) 
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Fig. 10 - Theoretical response. 

300 f(Hz) 200 

s 

A,. 
t 
/I 

1 

1  t 
1 

. 

F=0 sr.._  
‘ ' t 

t 
1 

ii 	.. 
. 	• 

. 
■ 	•-•... \ 

• 

Nr • /. 	 
.• 

/ 
/ 

-IN 

., 
1 . 

,/,-- .... 
20 	30 	40 50 60 70 80 100 

a/P (dB) 
40 

30 

20 

10 

0 • 

-10 

-20 

-30 

-40 

x = 3/8 L 

x2  = 5/8 L 

, . 

II , 

1 
1 	li  

1 

i 

i 	1 4,-- 
/1 
/ 

/ 	/ l'•, 
t 

1 
% 
% 
% 
\ 

A 

F=0 

... 

. 
% 

• 

. 

.1' 
-,..\\ 

'.%•1 

i 

i 
I 
I 

I 
1 
I 

\ 

\ 	I  
% 
0 
V  
1 

I  

1 
t P=604 

. 	, 
/ 	'-./.. 

■ 

, . 

/ 

	

■ 	- 	1 k. 	. . ...„. 	_ 

.- 	. 	 '  . 

1--  
I 

.."  
■ 

a/P (dB) 
40 

30 

20 

10 

0 

-10 

-20 

-30 

-40 

x 1  = 3/8 L 

x2 = 5/8 L 


	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12

