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ABSTRACT

A general finite element computer code for the space analysis of
folded-plate structures has been developed based on the stiffness
method. A direct access peripheral storage is used as a scratch
file in the formulation of the overall stiffness and load matr-
ices. This made it possible to analyze large multi-vent, multi-
span, folded-plate structures. The stiffness matrix of a one- .
dimensional space frame element assuming nodal forces and displ-
acements at the top points of the cross-sections was derived and
used for the simulation of edge beams. The triangular plane-
stress element was used for modeling the in-plane action of diap-
hragms .

Check problems of single-vent simply supported folded-plate
structures with and without edge beams have been solved assuming
infinitely stiff end-diaphragms and the results of both displace-
ments and internal stresses were compared with the available :
"exact" analytical solution. This showed complete agreement in
both displacements and stresses.

Practical examples of three-vent simply supported and continuous
folded-plate roofs have been solved. Effect of edge beams and
ties were considered. In case of continuous folded-plates, the
éffect of the inner supports as point supports on the ridges or:
as a diaphragm supported at the ridge points was considered and -
discussed. Several practical conclusions have been made.

INTRODUCTION

The ability of folded-plate structures to span large areas with-
out requiring intermediate supports makes them very attractive -
to the designer. Many authors presented approximate methods for
the evaluation of internal stresses in folded-plates. In 1957,

an"exact" method based on the theory of elasticity was presented
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by Goldberg and Leve for the analysis of single-vent simply sup-
ported folded-plate roofs. However, the method is considerably
complicated far design purposes.

The great progress in the analysis of structures was due to the
progress in electronic computers through the last twenty years.
In this work, an integrated finite element system for the gen- ;
eral analysis of folded-plate structures based on the stiffness
method is presented. To overcome the problem of limited computer
storage which generally exists in the space analysis of such
large structures, a.direct access peripheral storage has been
Used in the system.

The problem formulation, description of stiffness and transfor-
mation matrices used, are presented in the next section. A
macro flow chart is then given to show the sequence of calcul- :
ations through the computer system. Check problems of one-vent
simply supported folded-plate roofs have been solved and the
results obtained are compared to those from the "exact!" analyt=
ical solution (3). Practical examples of more complicated stru-
ttures have been solved. Finally, a summary of the main find-
ings is given in the conclusions.

PROBLEM FORMULATION

Stiffness Matrix of a Folded-Plate Element

As this paper is concerned with prismatic folded-plate structures,
the rectangular element is used for modeling the space action of
these structures. As usual for planer elements, the in-plane
and the out-of-plane actions are completely independent. Two
in-plane translations u and v at each of the four nodes are con-
sidered for the simulation of the in-plane action, whereas,
three out-of-plane displacements w, 9_ and . at each of the
four nodes are taken for modeling the”"bending action. Therefore,
the stiffness matrix for the plane-stress action is based on the
four terms incomplete second order polynomial for both u and Vi
such that

“L |t o x vy xy 00 0 0] {al ...l (1)
v 0 0 C 0 1 x y x| 8x1

Zxl 2x8

The stiffness matrix for the bending action is based on the well
known twelve terms incomplete fourth order polynomial for w,
such that

2 Z
W % [l Xy x° xy vy x3 x2y xy2 y3 xsy xy3] {a} «¢ £2)
1x12 12x1

That is, five degrees of freedom are only considered at each of
the nodes. However, for convenience of the overall formulation
of the problem, 8§ was taken into account as a displacement comp-
vnent at each of the four nodes. In order to include the §

!-tm, which is known to be neglegible and not to affect the? 3
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‘other terms in the element stiffness matrix, the relationship
between ©_ and M_ at any of the nodes can be expressed by a
Mdummy" eGuation®as follows

MZ = O.GZ ....... (3}

‘Therefore, six components of nodal forces and displacements

are considered at each of the nodes. Consequently, the stiffn-
ess matrix of the folded-plate element is taken of dimensions
(24x24) . IF (kP and [KP] are the (8x8) and (12x12) stiffness
matrices representing the plane-stress and bending actions res-
pectively, each of these matrices can be partitioned correspon-
iding to the four nodes of the element. The submatrices in

[KP] will be of dimensions (2x2), while those in [KP] are of
dimensions (3x3). The stiffness matrix of the folded-plate
‘slement referred to the local system of axes will therefore

be

p 1 T
K1 (0] 0
L 0]
[ IO
| b
ol g
0°0/0 0 010
1 | ]
kP I [0] 19(kP | 0] &
S T T o
[0]: Kb 1 0 [0]) K 10 Symmetric
.2l o) 122 10
[k, }= (00,0 0 01010 070 0 070 (4)
. i | [ !
= P Olyp 10, p 0
K51 103 10|K5p! 101 101Kssy 12) L0
o' k2 1 %cop k2. i2ron! K2 9
[ ]: 31 ,0 [0} K39 ,8 | 33 18
L e s (e, o 3 e e e e | i s i s =
Dpd}o 0"0'00 0,0 0 0100 070 0010 | .
kP 1 [0] ;0[P 1 [o) '0lkP_ 1 (o1 ,Okb | 10110
ICHI L UL TR SR 49 SELd Ml ]
b b | b
(011 k%, lolto1) k) lgilolik, g (01, K g
4 42 g I 43 g L4 g
e e e ___L___L.__._.;..._._._...L_...—_..T_.._——f--—
06,0 0 0To|o 0ilo 6 0/0]d 0,0 0 0,0]0 050 0 010
24x24

Equilibrium Equations

The matrix given by equation (4) in the local coordinate systen
gives five components of forces only at each of the nodes. How-
ever, in the global coordinate system six equilibrium conditions
‘are assembled at each node. Thus, at a junction of two inclined
elements, six equations in the fixed coordinate system are for-

med from ten independent equations in the local systems and this

:is satisfactory. On the other hand, at a junction of two co-"’
planer elements, since the local coordinate systems of both
elements coincide, we get only five independent equations with

e ,hect to either the loca. or the global axes. Thus, although
,et s1x equilibrium equations in the global axes, only five
o1 these equations are.}ndepquent:.Thisnleads_to a_singular |

—.
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‘systern of equilibrium equations. ’

‘To overcome this situation, the equilibrium equations at a node
connecting co-planer elements should be referred to the local
isystem of axes at that node. This gives five equilibrium equ-
ations only corresponding to the five nodal forces considered.
However, a non-zero value has to be inserted on the diagonal
.element corresponding ‘to the sixth degree of freedom 6_ at the
‘node in order to get rid of singularity. This means thét equi-.
librium equations at nodes lying on a fold connecting two plates
:or ' a plate with an.edge beam will be formed with respect to the
global axes, while those at any of the interior nodes will be
referred to the local system at that node.

_Transformation Matrix and Transformed Stiffness Matrix of a
‘General Element

Figure 1 shows a connection between a plate lying in the horiz-
‘ontal plane and another plate making an angle o with the horiz-
ontal plane. The global system of axes x,y and z is assumed to.
coincide with the local axes of the horizontal plane. The local
isystem of axes for a rectangular element in the inclined plane

X,y and z is shown in the figure. The rotation matrix[R]for the
six components of nodal forces or nodal displacements from

‘local to global systems of axes can be put in the form

[R] (0] 1 ;
(R} = %’ | e (5)
o &6 o1 [R) J |
:in which et
1 0 0
[R],5 = |0 cos o5 cos o3| eeeiiiiiiinan, (6)
0 cos ¢z§ cos ¢22J

The transformation matrix [T] of the entire element depends on.
ithe position of the element and on its nodes that are conside-'
red as interior nodes. As there is no transformation at the
interior nodes, the rotation matrix corresponding to any of
ithese nodes will be the identity matrix [I] ¢ instead of the
matrix [R] e Therefore, the transformation"matrix [T] of the
entire element is a diagonal matrix composed of four diagonal
:submatrices. Any of these submatrices will be either [1]6 6

if the corresponding node is an interior node, or [R] lf

the corresponding node lies on a fold or on a junction” with
.an edge beam. As an example, the transformation matrix for
‘the element shown in Fig. 1 takes the form
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"[T] i (R] R veeees (7))
. (R]

(11 4. .
24x24

The transformed stiffness matrix [K, Jof the element is related
;to its local matrix [Kl] in the usual Form

Kl = (MK TY e (8)

Diaphragms Modeling

As diaphragms are considered to resist in-plane forces only,
:ithey are modeled by plane stress elements. Herein, the cons-
tant strain triangle based on the first order displacement .
model has been used. For diaphragms lying in the vertical plane
y-z (Fig. 2), the displacement components v and w at each of the
three corner nodes are considered for the simulation of their
in-plane behaviour. Consequently, the stiffness influence coe-:
fficients of these elements will correspond only to these two
components.

For elements connected to an inclined folded plate, if one or
more of the nodes of these elements are connected to interior
nodes, the nodal forces of the plane-stress elements and conse-=
quently their corresponding stiffness submatrices has to be
‘transformed from the y-z system of axes to the local system of
the inclined plate.

%he rotation matrix of the two components of nodal forces or
displacements from the y-z axes to the y-Z axes will be

cos ¢Yy cos ¢72
[R] = | 5 R R K (9)
X2 cos ¢iy cos ¢,
2x2
Thus, the transformation matrix [(T] i of the entire element ié
composed of three diagonal submatrices; either [R] or [I]

While the submatrix [R] corresponds to the node orzgﬁe two ZX%
hodes attached at interior nodes within an inelined plate, the °
submatrix [I] corresponds to other nodes. As an example, the
transformation matrix for the element shown in Fig. 2 is given .
o : :

(R] 0

[T] = (Il | e (10)
0 (I]
6x6

Ihe transformed stiffness matrix of the element [K ].can he o
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‘relateq to the matrix [Kg] referred to the y-z axes as follows

T
[Ked o= [T] [Kg] (7] ceeeeeeeieeens (11)
6x6 ' )

Stiffness Matrix of a space frame Element Having its Nadal
.Forces and Displacements at the Top Points of the Cross-Sections:

Figure 3 shows a space frame skeletal element with the six com-
:ponents of end-forces {Q} or the end-displacements {q} at either
of its two ends are assumed to act at the mid point of the upp-
er edge of the cross-section. The stiffness matrix (K ] of the’
‘element has been formulated by the application of the“usual
principles and is given in equation (12), in which E is Young's
.modulus ; A is the cross-sectional area; Iy and I, are the mom=
‘ents of inertia about the y and z axes respectively; J is the
torsional moment of inertia; L is the length of the member and
h is the depth of its cross-section. '

SYSTEM FLOW CHART

As mentioned before, in order to overcome the problem of limited
working storage of the computer, the system uses a direct access
‘peripheral storage as a scratch backstore file in the formula-
tion of the overall system of equilibrium equations. The str-
ucture is considered to be partitioned into a group of parts.
‘The size of each part depends on the available working sterage
in the computer. The equilibrium equations corresponding to

the nodes within any of these parts 1is formulated first in the:
‘working store, then transmitted to the backstore. The sequence
of operations can be illustrated by the macro flow chart given
soon in the sequal. :

CHECK PROBLEMS

‘To check the accuracy of the developed system, three test pro-
blems given by Goldberg and Leve in reference (3) have been
:solved. FEach of these examples is a one vent simply supported:
‘folded-plate roof with infinitely stiff end~diaphragms. Results
of the finite element analysis are compared to those given by
.the '"exact" analytical solution in reference (3). Details and:
‘results are given below. '

Problem 1:

Figure 4 shows the cross-section of a simply supported folded-
plate roof with span of 120 and subjected to the given wind
‘loading. Values of Young's modulus £ and Poisson's ratio Vv are
given as

E = 3.7 x 10° psi = 5.328 x 10°

1b/Ft%. , v = 0.20

Jaole l gives the displacement components at the four ridge 3
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‘Macro Flow Chart

START
I .

Read and print all control parameters (geometry, material prope-
rties, dimensions and support ‘conditions).

Loop --- 1 1, number of parts

|

first element , last element

H

Loop --- J

Read element informations [kind ( folded-plate element, diaphragm
element, beam element , truss element ) ; type ; nodal numbers
and their types ]. Write these informations on the backstore.

Call subroutiné for element stiffness and load matrices

Assemble whole or part of the element stiffness and load matrices )
to the overall stiffness and load matrices of that part,

Write the overall stiffness and load matrices in their appropriate|:
position on the disc file.

Modify the overall system of equilibrium equations on the disc
file corresponding tao the bounding conditions.

Solve the system of equations on the disc file and print the
results on the line printer.

Call subroutine for calculation of stresses and print the output
on the line printer.

I
STOP

points of the mid-span section. The two in-plane translations
v .and w at each of the ridge points are referred to the corre-,
sponding system of axes at that ridge (Fig.4). First column of°
‘the table gives the results of the "exact" analysis according
to Leve, whereas the other three columns give the results of
:the computer analysis using different numbers of elements for
modeling one half of the structure only. While the results of
ithe three finite element meshes show thgufulfi;lmenﬁ of the
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: Table 1
Disp.| Exact e
comp.| (Leve) Finite elements Hrite
| 154element | 48 element| 24element
u - 1.057 |- 1.032 |- 0.9878 |- 0.853 ft.
v . 3.918 3.780 | . 3.6400 2.948 | ft.
o€ w -224.000 |-212.000 |-218.1000 |-206.700 ft.
23| 6 - 10.520 |- 10.630 |- 10.6500 |- 10.149 | Rad.
aa QA X
NI 1.193 1.169 1.122 0.986 ft.
ow| v - 4.599 |- 4.446 |- 4.278 - 3.765 ft.
ga| w |- 7.191 |- 6.949 |- 6.683 |- 5.862 | ft.
= a 6, |- 5.465 |- 5.085 |- 5.045 |- 5.001 | Rad.
N - 1.0188 |- 0.995 |- 0.953 - 0.830 | ft.
R - 4.592 |- 4.441 |- 4.274 - 3.761 ft.
gal w - 6.059 |- 5.845 |- 5.604 |- 4.859 ft.
=al o 1.503 1.429 1.445 1.527 | Rad.
o< U 0.715 0.6918 0.656 0.5517 | ft.
ol v 2.958 2.8490 2.724 2.335 ft.
Q& w - 22.090 |- 21.9600 |- 22.430 - 24.780 ft.
Aol 8 1.161 1.1610 1.168 1.228 | Rad.
[0 Al = 18 X
All values are multiplied by 1074

there is a
:very satisfactory agreement in the results of the finest mesh

.Table 2 gives the "exact" values of some of the internal stre-:
‘'sses (the longitudinal normal stress N_, the longitudinal mom-

points of the mid-span

lues obtained from the:

convergence requirement is clear and the accuracy is quite

_satisfactory.

Table 2
Nx Exact Finite elements MX & My Exact Finite elements
1b/ft4 (Leve) |154 Elsf 48 Els. 24 Els.lb.ft/ft.|(Leve) [154 Els.|48 Els.|24 Els.
NX 601.0 | 585.0 [ 566.78 | 451.95 Mx 44,92 (-44.64 |-44.43(-43.16
1 2
Nxz -685.0 |-668.0 |647.26 |-523.1 M, 22.421 20.30 | —= —=| —= —-
Nx 581.0 | 566.0 | 547.76 | 437.97 Mya - 3.40|- 3.66 | —= -=| -= --
3 a
NX -408.0 |-395.0 +-380.27 |-292.58
4
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Problem 2 :

:This is similar to problem 1 except with two additional edge
beams as shown in Fig. 5 . The beam is modeled by the stiffness
matrix given in equation (12). Table 3 gives the "exact" values
‘of the displacement components at the four ridge points of the
mid-span section compared with those obtained from the finite :
element analysis using 154 elements for one half of the struc-"
:ture. Good agreement between results is noticed.

Table 3

Disp. Ridge point 1 Ridge point 2 Ridge point 3 | Ridge point 4
Comp. Exact |Finite ElJExact |Finite El.) Exact |[Finite E1J Exact |Finite E1.

u 1.024) 1.050 0.121 0.033 |-0.406 |-0.477 0.226 | 0.236 ft.
v [-40.09 |-40.06 =1.552.| = 1.215 |-1.227 {-1.180 6.154 ] 6.470 ft.
w [-21.53 |-21.30 0.938 1.138 | 2.302 | 2.071 -2.305|-2.338 ft.
Gx - 0.865|- 0.973 1-1.789| - 1.663 | 0.635 0.617 0.191 | 0.206Rad.

* All values are multiplied by 1074,
* The two in-plane translations v and w at each of the ridge

?oints are referred to the corresponding system of axes
Fig.5).

Problem 3:

:Figure 6 shows the cross-section of a simply supported folded-
plate roof with span of 32" and subjected to the given vertical
loads. Results of the finite element analysis using a mesh of:
{120 elements for modeling one quarter of the structure, are
shown in Fig. 7 for the longitudinal normal stress Ny, the
transverse moment M , the transverse normal stress at the
imid-span section and’the shear stresses Nyy at the section

near the supports. Values obtained from the "exact™" analytical
solution by Leve are also plotted on the diagrams. The maxi-
imum difference between the values of the two solutions is less'®
or equal to 4,3%, which is quite acceptable,

PRACTICAL APPLICATIONS

:In order to study the effect of j continuity, the type of inter-
‘mediate supports, other elements such as beams and ties, on the
behaviour of folded-plate structures, practical examples of
.three vents simply supported and continuous folded-plate roofs:
‘have been solved. The cross-section of these examples and the
assumed case of vertical loading are given in Fig. 8. The first
.two examples are simply supported with span of 12 ms. The diffe-
‘Tence between the two examples is the addition of edge beams

.(20x40 cm section ) at each of the bottom ridges in the second,
L. o5 - <t - “e s - . a5 v s .
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5example. ‘The other three examples are continuous of two spans:
12 ms each. While there are two end-diaphragms of 15 cm thick-
iness in each of these cases, the condition at the intermediate
support is different. In the first example,there is another

15 cm intermediate diaphragm supported on columns at the ridge
‘points. In the second example, the diaphragm is substituted

by (20x20 cm) ties connecting the columns top points. In the
third example, the folded-plate is assumed to be directly sup-
iported on the column point supports at the ridge points. The
number of elements used for modeling one quarter of the simply:
supported cases is 120. The elements used for discretizing one
iquarter of each of the three continuous cases are 264, 254 and
252 elements respectively.

‘Figures 9 a,b,c and 10 a,b,c.give the distribution of the tran-
sverse moment My, the longitudinal and transverse normal stre-.
:ssesNxandNyat {he mid-span section of the two simply supported
‘cases. Figures 9d and 10d give the distribution of shear stre-
sses Nyy at the end-supports in the two cases. From these :
.diagrams, while values of the internal stresses in case of edge
‘beams are generally decreased, the main reduction is in the
positive values of Ny at the bottom ridges. Other values of :
.Stresses including the transverse moment My are slightly changed.

Figures lla & b show the contour lines for the principal tens-.
ile stresses N] in the end and the intermediate diaphragms of

‘the first case of the two spans examples. Figures llc & d show
the contour lines for Nj in the end-diaphragms of the two other
.cases. The shape of the contour lines and the values of N1 in *
‘the intermediate diaphragm explain the close behaviour of that

case to the case of intermediate point supports connected with
ties. :

Distribution of Nxy over the section near the end-supports and
that to the left of the intermediate supports in the three :
‘examples is shown in figures 12a & b. The increase of the values
of Ny, at the end-supports and the corresponding increase in the
valuel of N1 in the end-diaphragms of the third case is due to
:the increase of the external Teactions in this case compared

‘to the other two cases. Also, the considerable increase in the
external reactions at the intermediate supports in the case with
:an intermediate diaphragm, which reach almost Ffour times the :
‘'values of the end-reactions in that case, 1is responsible for

the considerable increase in the shear stresses Nxy at that
.section and the increase in the principal tensile stresses in
‘the intermediate diaphragm . Significant increase in the values

of Nxy at the position of the intermediate point supports are
.also noticed. However, these values tend quickly to zero.

figures 13a & b show the distribution of the transverse moment
My at the mid-span section and the section at the intermediate
support in the three examples. While the maximum values of M

In the first two cases take place at section of 0.4 the span
tfrom the end-supports, in the case of inner point supports the:
‘maximum values are at the section of these supports. However,
.the difference between the maximum values of My and those at
.. ;

3

s
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‘the mid-span section in the first two cases is not significant.

It is also noticed that the maximum values of My in the first

itwo cases are less or equal to half those in the case of inte-

rmediate point supports, and that their values are less than
those in the simply supported case by about 40%. While the

‘values of My along any of the folds in the first two cases are

always negative, in the third case My becomes positive at the :
outer upper fold of the first vent. This is due to the large

itransverse displacements of the section with intermediate

point supports.

‘The distribution of the leongitudinal normal stfess Ny along

each of the folds in the three examples is shown in Fig. 14.
The maximum positive values of Ny are noticed to be at about

‘0.4 the span in the first case and at about half the span in

the other two cases. These values in the first two cases are

.smaller than the corresponding values in the simply supported
‘case by about 40%. The maximum positive values in the case of

point supports are almost average values between those of the :

first two cases and the simply supported case.

Finally, the distribution of the transverse normal stresses N%
over the two sections of the mid-span and the intermediate

‘supports is given in figures 15a & b . The values of Ny at the

section of the point supports in the third case are 2-3 times
those in the first case with intermediate diaphragm . The add-+

‘ition of ties reduces slightly these values.

From the above discussion, a great concentration of the tran-
‘'sverse stresses My, N, and Ny, atthe position of the intermediate

point suppaorts is obgérved. However, the values of these str-
esses can be somewhat reduced if the actual cross-sectional

‘dimensions of these columns are considered.

SUMMARY AND CONCLUSIONS

A finite element computer system for the genéral analysis of

.folded-plate structures has been developed. To show the effec-
‘tiveness and versatility of the system to analyze large stru-

ctures, practical examples have been solved. Based on the num-,

.erical results discussed in the paper, the following conclus-
‘ions can be made:

1. Although values of the internal stresses are generally
reduced by the addition of edge beams, the main reduction
is in the positive values of the longitudinal normal stress
Nx at the bottom ridges. Other values of stresses, including
the transverse moment My, are slightly changed. ‘

2. In case of continuous folded-plates with an intermediate

diaphragm , the maximum positive values of Ny and the maximum:
values of the transverse moment M, are reduced considerably
compared to values for the simply supported case with similar
span. 5

s However, values of tﬁe shear stresses N,, are somewhat inc-
reased at the inner intermediate diaphragm . This is due to 3
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the conéiderable increase in the external reactions at the
intermediate supports. '

In case of inner point supports, a considerable increase in,
the values of the transverse stresses My, Ny and Nyy is
noticed near these supports. This is attributed to the
high values of concentrated reactions acting directly on
the ridges and the big values of possible transverse rel-
ative displacements between the ridges at these supports.

Maximum positive values of the longitudinal stresses Ny in
case of intermediate point supports are almost average val-
ues between those in the simply supported case and the
continuous with an intermediate diaphragm .

The addition of ties connecting the top points of the
intermediate columns in case of inner point supports red-
uces considerably all internal stresses and makes them
almost approach the corresponding values in case of cont-
inuous with an intermediate diaphragm. However, some conc-
entration in the transverse stresses Ny and Nxy at the
point supports is still noticed.
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