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ABSTRACT  

A general finite element computer code for the space analysis of 
folded-plate structures has been developed based on the stiffne:ss 
Method. A direct access peripheral storage is used as a scratch 
file in the formulation of the overall stiffness and load matr-
ices. This made it possible to analyze large multi-vent, multi-
Span, folded-plate structures. The stiffness matrix of a one- 1 
dimensional space frame element assuming nodal forces and displ-
acements at the top points of the cross-sections was derived and 
used for the simulation of edge beams. The triangular plane- . 
stress element was used for modeling the in-plane action of diap- 

hragms . 

Check problems of 	single-vent simply supported folded-plate 
structures with and without edge beams have been solved assuming 
infinitely stiff end-diaphragms and the results of both displace-
ments and internal stresses were compared with the available 
"exact" analytical solution. This showed complete agreement in • 

both displacements and stresses. 

Practical examples of three-vent simply supported and continuous 
folded-plate roofs have been solved. Effect of edge beams and 

ties were considered. 	In case of continuous folded-plates, the 
effect of the inner supports as point supports on the ridges or: 
as a diaphragm supported at the ridge points was considered and • 
discussed. Several practical conclusions have been made. 

INTRODUCTION  

The ability of folded-plate structures to span large areas with-
out requiring intermediate supports makes them very attractive • 
to the designer. Many authors presented approximate methods for 
the evaluation of internal stresses in folded-plates. In 1957, 
anflexact" method based on the theory of elasticity was presented 
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by Goldberg and Leve for the analysis of single-vent simply sup-

ported fOlded-plate roofs. However, the method is considerably 
complicated for design purposes. 

The great progress in the analysis of structures was due to the 
progress in electronic computers through the last twenty years. 
In this work, an integrated finite element system for the gen- : 
eral analysis of folded-plate structures based on the stiffness 
method is presented. To overcome the problem of limited computer 
storage which generally exists in the space analysis of such 
large structures, a.direct access peripheral storage has been 
Used in the system. 

The problem formulation, description of stiffness and transfor-
Mation matrices used, are presented in the next section. A 
macro flow chart is then given to show the sequence of calcul-
ations through the computer system. Check problems of one-vent 
'simply supported folded-plate roofs have been solved and the 

results obtained are compared to those from the "exact" analytH 
:ical solution (3). Practical examples of more complicated stru-
ctures have been solved. Finally, a summary of the main find-
ings is given in the conclusions. 

PROBLEM FORMULATION  

Stiffness Matrix of a Folded-Plate Element 

As this paper is concerned with prismatic folded•plate structures 
the rectangular element is used for modeling the space action of 
these structures. As usual for planer elements, the in-plane .  
and the out-of-plane actions are completely independent. Two 
In-plane translations u and v at each of the four nodes are con-
sidered for the simulation of the in-plane action, whereas, 
three out-of-plane displacements w, ex  and ey  at each of the 
four nodes are taken for modeling the bending action. Therefore, 
the stiffness matrix for the plane-stress action is based on the 
four terms incomplete second order polynomial for both u and 
such that 

... 
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The stiffness matrix for the bending action is based on the well 
known twelve terms incomplete fourth order polynomial for w, 
such that 

	

w 	= [1 x y x
2 

xy y
2 

x3 x
2
y xy

2 
y
3 

x
3
y xy

3
j {c.} .. (2) 

lxl2 12x1 
• 

That is, five degrees of freedom are only considered at each of 
the nodes. However, for convenience of the overall formulation 
of the problem, 0 was taken into account as a displacement comp- 
dnent at each of the four nodes. 	In order to include the ez  
'- m, which is known to be neglegible and not to affect the 
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other terms in the element stiffness matrix, the relationship ; 

between az  and Mz  at any of the nodes can be expressed 
by a 

:"dummy" equation as follows 
M
z 

= 0.8
z 	

(3Y 

•Therefore, six components of nodal forces and displacements 
are considered at each of the nodes. Consequently, the stiffn-
ess matrix of the folded-plate element is taken of dimensions 
;(24x24),If [Kr] and [Kb] are the (8x8) and (12x12) stiffness 
matrices representing the plane-stress and bending actions res7 
pectively, each of these matrices can be partitioned correspon-

ding to the four nodes of the element. The submatrices in 

[Kr] will be of dimensions (2x2), while those in [Kb] are of 

dimensions-  (3x3). The stiffness matrix of the folded-plate 

:element referred to the local system of axes will therefore 

be 
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Equilibrium Equations  

The matrix given by equation (4) in the local coordinate systeM 
gives five components of forces only at each of the nodes. How-
ever, in the global coordinate system six equilibrium conditions 
;are assembled at each node. Thus, at a junction of two inclined 
elements, six equations in the fixed coordinate system are for-
med from ten independent equations in the local systems and this 
:is satisfactory. On the other hand, at a junction of two co-' 
planer elements, since the local coordinate systems of both 
elcments coincide, we get only five independent equations with 

to either the loca'!. or the global axes. Thus, although 

,et Six equilibrium equations in the global axes, only five 
te equations are independent. This leads to a singular 
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:syster, f equilibrium equations. 

To overcome this situation, the equilibrium equations at a node 
connecting co-planer elements should be referred to the local 
!system of axes at that node. 	This gives five equilibrium equ- 
ations only corresponding to the five nodal forces considered., 
However, a non-zero value has to be inserted on the diagonal ' 
;element corresponding to the sixth degree of freedom ez  at the 
node in order to get rid of singularity. This means that equi-, 
librium equations at nodes lying on a fold connecting two plates 
ior - a plate with an.edge beam will be formed with respect to the 
global axes, while those at any of the interior nodes will be 
referred to the local system at that node. 

Transformation Matrix and Transformed Stiffness Matrix of a 
General Element  

Figure 1 shows a connection between a plate lying in the horiz.: 
iontal plane and another plate making an angle a with the horiz-
ontal plane. The global system of axes x,y and z is assumed to 
coincide with the local axes of the horizontal .plane. The local 

:system of axes for a rectangular element in the inclined plane 

x,y and i is shown in the figure. The rotation matrix[R]for the 
six components of nodal forces or nodal displacements from 
local to global systems of axes can be put in the form 

[R] 	[0] 

(5) 

[ 0 ] 	[RI 
)x3 

	

0 	 0 

3x3 

0 	cos (py.c; 	cos- 
yz 

0 	cos ( z;,- 	cos q) 
zz 

(6) 

• • 

[R] 
6x6 

• 

in which 

[R4.3 = 

The transformation matrix [T] of the entire element depends on:  
the position of the element and on its nodes that are conside-' 
red as interior nodes. As there is no transformation at the 

interior nodes, the rotation matrix corresponding to any of 
:these nodes will be the identity matrix 

[1]6x6 
instead of the 

matrix 
[R]6x6. 

Therefore, the transformation matrix [T] of the 
entire element is a diagonal matrix composed of four diagonal 
:submatrices. Any of these submatrices will be either [I]

6)i.6 
if the corresponding node is an interior node, or [R]

6x6 
the corresponding node lies on a fold or on a junction with 
•an edge beam. As an example, the transformation matrix for 
.Lhe element shown in Fig. 1 takes the form 

L . 
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• 

(7) [T] = [R] 

[R] 
0 

[I] 

  

6 

24x24 
• 

The transformed stiffness matrix [K ]of the element is related' 
:to its local matrix [K] in the usual 'form 

[K
t
] = [T] [K Q ] [ T

T 

Diaphragms Modeling 

As diaphragms are considered to resist in-plane forces only, 
:they are modeled by plane ,tress elements. Herein, the cons-
tant strain triangle based on the first order displacement 
model has been used. For diaphragms lying in the vertical plane 
:y-z (Fig. 2), the displacement components v and w at each of the 
three corner nodes are considered for the simulation of their 
in-plane behaviour. Consequently, the stiffness influence coe-; 
fficients of these elements will correspond only to these two 
components. 

For elements connected to an inclined folded plate, if one or 
more of the nodes of these elements are connected to interior 
nodes, the nodal forces of the plane-stress elements and conse-: 
quently their corresponding stiffness submatrices has to be 
transformed from the y-z system of axes to the local system of 
the inclined plate. 

The rotation matrix of the two components of nodal forces or 
displacements from the y-z axes to the 7-2 axes will be 

 
(0- 
YZ_ 

[R] = 	
(9) 

2x2cos q)... 	cos 
_ 	zy 	(0 Ez_ 

2x2 

Thus, the transformation matrix [T1 
6x6  of the entire element is -'  

composed of three diagonal submatrices; either [R]2or [I]
2x2' 

, 
While the submatrix [R] corresponds to the node or 	two 
nodes attached at interior nodes within an inclined plate, the 
submatrix [I] corresponds to other nodes. As an example, the 
transformation matrix for the element shown in Fig. 2 is given , 
by 

(8) 

cos co- 	cos 
YY 

1 
[T] = 

[R] 	0 

[I] 

0 	[I] 
-6x6 

 

(10) 

  

    

ihe transformed stiffness matrix of the element [K I can be 
t 
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:related to the matrix [Kg] ] referred to the y-z axes as follows 

[Kt] = [T] [Kg] [T]T 	 (11), 

6x6 

Stiffness Matrix of a space Frame Element Having its Nadal  
,Forces and Displacements at the Top Points of the Cross-Sections: 

Figure 3 shows a space frame skeletal element with the six corn: 

!ponents of end•forces {Q} or the end-displacements {q} at either 
of its two ends are assumed to act at the mid point of the upp7  
er edge of the cross-section. The stiffness matrix Dy of the' 
:element has been formulated by the application of the usual 

principles and is given in equation (12), in which E is Young's 
modulus ; A is the cross-sectional area; Iy  and 1z  are the mom.: 
'ents of inertia about the y and z axes respectively; J is the 
torsional moment of inertia; 	L is the length of the member and 
h is the depth of its cross-section. 

• 

SYSTEM FLOW CHART  

As mentioned before, in order to overcome the problem of limited 
working storage of the computer, the system uses a direct access 
•peripheral storage as a scratch backstore file in the formula-
tion of the overall system of equilibrium equations. The str-
ucture is considered to be partitioned into a group of parts. 
:The size of each part depends on the available working storage 
in the computer. 	The equilibrium equations corresponding to 
the nodes within any of these parts is formulated first in the 
:working store, then transmitted to the backstore. The sequence 
of operations can be illustrated by the macro flow chart given 
soon in the sequal. 

CHECK PROBLEMS 

'To check the accuracy of the developed system, three test pro-

blems given by Goldberg and Leve in reference (3) have been 
:solved. Each of these examples is a one vent simply supported: 
'folded-plate roof with infinitely stiff end-diaphragms. 	Results 
of the finite element analysis are compared to those given by 
:the "exact" analytical solution in reference (3). Details and:  
'results are given below. 

Problem 1: 
• 

Figure 4 shows the cross-section of a simply supported folded-
plate roof with span of 120 and subjected to the given wind 

• :loading. Values of Young's modulus E and Poisson's ratio v are 
given as 

E = 3.7 x 10
6 
psi = 5.328 x 10

8 
lb/ft

2
. , v = 0.20 

:Taole 1 gives the displacement components at the four ridge 
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START 
I. 

[

Read and print all control parameters (geometry, material prope-
rties, dimensions and support 'conditions). 

Loop --- I z 1 , number of parts 

Loop --- J = first element , last element 

Read element informations [kind 	folded-plate element, diaphragm 
element, beam element , truss element ) ; type ; nodal numbers 
and their types ]. Write these informations on the backstore. 

	  • 

Call subroutine for element stiffness and load matrices 

Write the overall stiffness and load matrices in their appropriate 
position on the disc file. 

••■•■••••••••n11•■•■ 

Assemble whole or part of the element stiffness and load matrices 
to the overall stiffness and load matrices of that part. 

Modify the overall system of equilibrium equations on the disc 
file corresponding to the bounding conditions. 

Solve the system of equations on the disc file and print the 
results on the line printer. 

!CA-1 I 8 I 
II 
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Macro Flow Chart  

Call subroutine for calculation of stresses and print the output 
on the line printer. 

STOP 

points of the mid-span section. The two in-plane translations 

v and w at each of the ridge points are referred to the corre-. 
:sponding system of axes at that ridge (Fig.4). First column of 
the table gives the results of the "exact" analysis according 
to Leve, whereas the other three columns give the results of 
the computer analysis using different numbers of elements for 
modeling one half of the structure only. While the results of 
the three finite element meshes show the fulfillment of the 
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Table 1 

Disp. 
comp. 

Exact 
(Leve) 

Finite 	elements 
Units 

.154element 48 element 24element 

u - 	1.057 - 	1.032 - 	0.9878 - 	0.858 ft. 
v 3.918 3.780 3.6400 2.948 ft. 

ig
e  

in
t 

w -224.000 -212.000 -218.1000 -206.700 ft. 
e x - 10.520 - 10.630 - 10.6500 - 10.149 Rad. 

u 1.193 1.169 1.122 0.986 ft. 
v - 	4.599 - 	4.446 - 	4.278 - 	3.765 ft. 

id
c  

3i
r  w - 	7.191 - 	6.949 - 	6.683 - 	5.862 ft. 

e x - 	5.465 - 	5.085 - 	5.045 - 	5.001 Rad. 

u - 	1.0188 - 	0.995 - 	0.953 - 	0.830 ft. 
v - 	4.592 - 	4.441 - 	4.274 - 	3.761 ft. 

id
c  

D
i
r
  

w - 	6.059 - 	5.845 - 	5.604 - 	4.859 ft. 
8 x 1.503 1.429 1.445 1.527 Rad. 

R
i
d
g
e
  

p
o
i
n
t
 4
 
 

U 0.715 0.6918 0.656 0.5517 ft. 
v 2.958 2.8490 2.724 2.335 ft. 
w - 22.090 - 21.9600 - 22.430 - 24.780 ft. 
8 x 1.161 1.1610 1.168 1.228 Rad. 

All values are multiplied by 	10
-4 

convergence requirement of the numerical solution, there is a 
:very satisfactory agreement in the results of the finest mesh 
with those of the "exact" solution. 

:Table 2 gives the "exact" values of some of the internal stre-: 
'sses (the longitudinal normal stress Nthe longitudinal mom- 
ent M and the transverse moment My ) 	 points of the mid-span 
section (Fig.4) and the corresponding values obtained from the 
finite element analysis by the three meshes chosen. Again, the 
convergence requirement is clear and the accuracy is quite 
satisfactory. 

Table 2 

N
x 

lb/ft. 

Exact 

(Leve) 

Finite elements M
x 	

& M
Y  

24 Els.lb.ft/ft. 

Exact 

(Leve) 

Finite elements 

154 Els. 48 Els. 154 Els.48 Els. 24 Els. 

N 
x
1  

N
x2 

N
x 
3 

N 
x4  

-r_ 

601.0 

-685.0 

581.0 

-408.0 

585.0 

-668.0 

566.0 

-395.0 

566.78 

-647.26 

547.76 

-380.27 

451.95 

-523.1 

437.97 

-292.58 

M
x2 

M
x 

M 
a 

-44.92 

22.42 

- 3.40 
Ye 

 

-44.64 

20.30 

- 	3.66 

-44.43 

-- -- 

-- -- 

-43.16 

-- -- 

-- -- 



Finite El. Exact Finite El. Exact 

Disp. 

Comp. 

Ridge point 1 

Exact 

Ridge point 2 

Finite El. 

Ridge point 3 Ridge point 4 

Finite El.Exact 

1.024 
-40.09 

-21.53 
- 0.865 

1.050 
-40.06 
-21.30 
- 0.973 

0.121 
-1.552 

0.938 
-1.789 

0.033 
- 1.215 

1.138 
- 1.663 

-0.406 
-1.227 

2.302 
0.635 

-0.477 
-1.180 

2.071 
0.617 

0.226 

6.154 
-2:305 
0.191 

0.236 ft. 
6.470 ft..  

-2.338 ft. 
0.206Rad. 

w 

ex 

* All values are multiplied by 10-4 - 
* The two in-plane translations v and w at each of the ridge 
points are referred to the corresponding system of axes 
(Fig.5). 
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--; :Problem 2  

This is similar to problem 1 except with two additional edge 
beams as shown in Fig. 5 . The beam is modeled by the stiffness 
matrix given in equation (12). Table 3 gives the "exact" values 
of the displacement components at the four ridge points of the 
mid-span section compared with those obtained from the finite 

element analysis using 154 elements for one half of the struc-' 
iture. Good agreement between results is noticed. 

Table 3 

Problem 3: 

'Figure 6 shows the cross-section of a simply supported folded-

plate roof with span of 32 and subjected to the given vertical 
.loads. Results of the finite element analysis using a mesh of 
:120 elements for modeling one quarter of the structure, are 
shown in Fig. 7 for the longitudinal normal stress Nx , the 
transverse moment M , the transverse normal stress Ny  at the 
:mid-span section and'the shear stresses Nxy  at the section 
near the supports. Values obtained from the "exact" analytical 
solution by Leve are also plotted on the diagrams. The maxi- 
imum difference between the values of the two solutions is less: 
or equal to 4.3%, which is quite acceptable. 

PRACTICAL APPLICATIONS  

.In order to study the effect of ; continuity, the type of inter-
mediate supports, other elements such as beams and ties, on the 
behaviour of folded-plate structures, practical examples of 
.three vents simply supported and continuous folded-plate roofs: 
have been solved. The cross-section of these examples and the 
assumed case of vertical loading are given in Fig. 8. 	The first :two examples are simply supported with span of 12 ms. The diff?- 
'rence between the two examples is the addition of edge beams 
:(20x40 cm section ) at each of the bottom ridges in the second, 
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:example. The other three examples are continuous of two spans: 
12 ms each. While there are two end-diaphragms of 15 cm thick-
ness in each of these cases, the condition at the intermediate 
support is different. In the first examplel there is another 
15 cm intermediate diaphragm supported on columns at the ridge 
•points. In the second example, the diaphragm is substituted 
by (20x20 cm) ties connecting the columns top points. In the 
third example, the folded-plate is assumed to be directly sup-.  
;ported on the column point supports at the ridge points. The 
number of elements used for modeling one quarter of the simply: 
supported cases is 120. The elements used for discretizing one 
!quarter of each of the three continuous cases are 264, 254 and 
252 elements respectively. 

•Figures 9 a,b,c and 10 a,b,c give the distribution of the tran-
sverse moment My , the longitudinal and transverse normal stre-• 
:sses Nx and Nyat the mid-span section of the two simply supported 
'cases. Figures 9d and 10d give the distribution of shear stre-
sses Nxy  at the end-supports in the two cases. From these 
.diagrams, while values of the internal stresses in case of edge 
'beams are generally, decreased, the main reduction is in the 
positive values of Nx  at the bottom ridges. Other values of 
.stresses including the transverse moment My  are slightly changd. 

Figures lla & b show the contour lines for the principal tens-:  
.ile stresses N1 in the end and the intermediate diaphragms of • 
:the first case of the two spans examples. Figures llc & d show 
the contour lines for N1 in the end-diaphragms of the two other.  
.cases. The shape of the contour lines and the values of N1 in 
:the intermediate diaphragm explain the close behaviour of that 
case to the case of intermediate point supports connected with 
ties. 

Distribution of Nxy  over the section near the end-supports and 
that to the left of the intermediate supports in the three 
:examples is shown in figures 12a & b. The increase of the values 
of Nx  at the end-supports and the corresponding increase in the 
value of N1 in the end-diaphragms of the third case is due to 
:the increase of the external reactions in this case compared • 
'to the other two cases. Also, the considerable increase in the 
external reactions at the intermediate supports in the case with 
:an intermediate diaphragm, which reach almost four times the 
'values of the end-reactions in that case, is responsible for 
the considerable increase in the shear stresses Nxy at that 
:section and the increase in the principal tensile stresses in 
'the intermediate diaphragm Significant increase in the values 
of Nxy at the position of the intermediate point supports are 
also noticed. However, these values tend quickly to zero. 

Figures 13a & b show the distribution of the transverse moment 
Mk at the mid-span section and the section at the intermediate 
—..pport in the three examples. While the maximum values of My  
in the first two cases take place at section of 0.4 the span 
from the end-supports, in the case of inner point supports the: 
maximum values are at the section of these supports. However, 
the difference between the maximum values of My  and those at 

-j 
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the mid-span section in the first two cases is not significant. 

It is also noticed that the maximum values of My in the first 
two cases are less or equal to half those in the case of inte-
rmediate point supports, and that their values are less than 
those in the simply supported case by about 40%. While the 

'values of My along any of the folds in the first two cases are 
always negative, in the third case My becomes positive at the 
outer upper fold of the first vent. This is due to the large 

;transverse displacements of the section with intermediate 
point supports. 

The distribution of the longitudinal normal stress Nx  along 
each of the folds in the three examples is shown in Fig. 14. 
.The maximum positive values of Nx  are noticed to be at about 
:0.4 the span in the first case and at about half the span in 
the other two cases. These values in the first two cases are 

:smaller than the corresponding values in the simply supported 
'case by about 40%. The maximum positive values in the case of 
point supports are almost average values between those of the 
first two cases and the simply supported case. 

Finally, the distribution of the transverse normal stresses Ny;  
over the two sections of the mid-span and the intermediate 
:supports is given in figures 15a & b . The values of Ny  at the 
section of the point supports in the third case are 	times 
those in the first case with intermediate diaphragm . The add= 
:ition of ties reduces slightly these values. 

From the above discussion, a great concentration of the tran-
sverse stresses My, N and Nxy  atthe position of the intermediate 
point supports is ob4erved. However, the values of these str-

esses can be somewhat reduced if the actual cross-sectional 
:dimensions of these columns are considered. 

SUMMARY AND CONCLUSIONS  

A finite element computer system for the general analysis of 
folded-plate structures has been developed. To show the effec-
tiveness and versatility of the system to analyze large stru-
ctures, practical examples have been solved. Based on the num-. 
,erical results discussed in the paper, the following conclus- • 
'ions can be made: 

1. Although values of the internal stresses are generally 
• reduced by the addition of edge beams, the main reduction 	• 

is in the positive values of the longitudinal normal stress 
Nx  at the bottom ridges. Other values of stresses, including 
the transverse moment My , are slightly changed. 

• 
2. In case of continuous folded-plates with an intermediate 

diaphragm , the maximum positive values of Nx  and the maximum; 
• values of the transverse moment My  are reduced considerably 

compared to values for the simply supported case with similar 
span. 

3. However, values of the shear stresses Nx y  are somewhat. inc- 
. 	reased at the inner intermediate diaphragm . This is due to j 
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the considerable increase in the external reactions at the 
intermediate supports. 

'4. In case of inner point supports, a considerable increase in:  
the values of the transverse stresses My, Ny and Nxy  is 

noticed near these supports. This is attributed to the 
high values of concentrated reactions acting directly on 
the ridges and the big values of possible transverse rel-
ative displacements between the ridges at these supports. 

5. Maximum positive values of the longitudinal stresses Nx  in 
case of intermediate point supports are almost average val-
ues. between those in the simply supported case and the 
continuous with an intermediate diaphragm . 

.6. The addition of ties connecting the top points of the 
intermediate columns in case of inner point supports red-
uces considerably all internal stresses and makes them 
almost approach the corresponding values in case of cont-
inuous with an intermediate diaphragm. However, some conc-
entration in the transverse stresses Ny  and Nxy at the 
point supports is still noticed. 
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