UTILIZATION OF THE PARAMETRIC TRANSPORTATION

PROBLEM IN MECHANICAL ENGINEERING

BY
Lt. Col. Dr. Said A. HASSAN*, Brig. Dr. M.S.A.OSMAN** and
Dr. A.ABOUEL NOUR***

ABSTRACT

In many practical transportation problems, the optimal solution is stated. But the question is always raised by the decision maker: What happens to this optimal solution when changes due to dynamic situations occur and /or due to inaccurate estimation of the system parameters.

This paper presents a computer FORTRAN program solving the practical transportation problem considering possible variations of its parameters both in the objective function and in the constraints. This program is based on theoritical results obtained in another paper written by the same authors that solves this problem directly on the transportation matrix [1].

These results can be used in many practical engineering applicationsin the distribution of spare parts, raw materials, and final products. As an example, the program was used for solving the distribution of final products from different stores to the individual governorate in Egypt with the objective to minimize the total transportation cost.

[^0]
INTRODUCTION

For certain fixed data of the transmportation problem, an optimal solution can be determined. But any real practical problem is a dynamic one. All the parameters of the problem are continously changing and the obtained optimal solution should be discussed once more.

A study of the effect of changes in parameters both in the objective function and in the constraints on the optimal solution and on the optimal value of the objective function is very necessary and valuable. This study enhances the scope of application of the stated results to different variations of the problem and saves the solution of new problems from the beginning.

CHANGES IN UNIT COST OF A BASIC VARIABLE

If the unit cost of a basic variable $x_{r s}$ changes by a value $\lambda_{r s}^{c b}$ simplex multipliers change which will cause some changes in the marginal costs of non-basic variables. Then there will be a range for the value of $\lambda_{r s}^{\mathrm{cb}}$ in which the optimal solution remains the same. This range is given by the condition that all the new marginal costs $\delta_{i j}^{\prime}$ for all the non-basic variables remain non-negative. Outside this range, the solution becomes no more optimal, and the non-basic variable $x_{p q}$ which has a new marginal cost $\delta_{p q}^{\prime}=m i n \delta_{i j}^{\prime}$ for all the non-basic variables should be introduced
into the basis.

CHANGES IN UNIT COST OF A NON-BASIC VARIABLE

If the unit cost $c_{r s}$ of a non-basic variable is increased by a value $\lambda_{r s}$ positive, the simplex multipliers remain unchanged. Also the new marginal costs for all the cells are not changed except $\delta_{r S}^{\prime}=c_{r_{S}}{ }^{-u_{r}}-v_{s}>\delta_{r s}$. Thus the optimal solution will not change.

On the other hand, if this unit cost decreases, then there will be a range $R_{r s}$ for the reduction of $c_{r s}$ through which the optimal solution remains the same. This range determines the lower limit $c_{r s}^{L}$ for this unit cost as $c_{r s}^{L}=c_{r s}-R_{r s}$

The lower limit is limited by the value of the new marginal cost

$$
\begin{align*}
\delta_{r s}^{\prime} & =c_{r s}^{L}-u_{r}-v_{s} \text { reaching zero, i.e. } \\
c_{r s}^{L} & =u_{r}+v_{s} \tag{1}
\end{align*}
$$

Then the range $R_{r s}$ is given by the equation:

$$
\begin{equation*}
R_{r s}=c_{r s}-c_{r s}^{L}=c_{r s}-u_{r}-v_{s} \tag{2}
\end{equation*}
$$

Delow this range of change, the variable $x_{r s}$ should be introduced to the
new basis.

ORA-2	11

r
CHANGES IN ONE LINE OF THE COST MATRIX
If λ^{L}, positive or negative, is added to all unit costs of one line L, row or columan, the optimal solution remains unchanged. But the value of the objective function will be changed to $z_{\text {new }}$:

$$
\begin{equation*}
z_{\text {new }}=z+\lambda^{L} \sum_{L} x^{L} \tag{3}
\end{equation*}
$$

where

$$
\begin{aligned}
\sum_{L}= & \text { Old value of the objective function } \\
& \text { Summation over the line } L, \\
x^{L}= & \text { Value of a basic variable on the line } \mathrm{L} . \\
& \text { CHANGES IN A DESTINATION REQUIREMENTS }
\end{aligned}
$$

If the requirements b_{j} of the j th warehouse is changed by a value $\lambda_{j}^{b} \geqslant-b_{j}$, there may be the question: Which supply should change his amount in order to balance the problem and in the same time the new value of the objective function will be minimum.

The answer may be obtained by changing the supply a_{i} of each store in turn and calculate the change value of the objective function from the equation

$$
\begin{equation*}
\Delta z=\lambda^{b}\left(u_{i}+v_{j}\right) \tag{4}
\end{equation*}
$$

Then that variant with the minimum value $z_{o l d}+\Delta z$ is chosen

UTILIZATION OF THE PROGRAM

A computer Fortran program [2]is used to solve the classical transportation problem, and a special routine is witten to study the different cases of variations in the transportation problem parameters.

Four cases are studied in this routine:

1. Changes in unit costs of basic variables without affecting the optimal solution, the lower and upper limits for each unit cost is given. The new variable that should be introduced to the new basis when the change is outside the determined range is also given.
2. Changes in unit costs of non-basic variables without affecting the optimal solution, the lower limits for costs of all the non-basic variables are determined.
3. Changes in unit costs of one row, for illustration the transportation rows are affected in turn by the amounts $5,4,3,2,1,-1,-2,-3,-4,-5$ unit costs. The new value of the objective function is calculated in each case.
4. Changes in requirements of destinations, for illustration the demand is changed by one unit positive and negative in turn. The change in the objective function corresponding to the assumed change in each supply is calculated.

FIRS'A A.M.E. CONFERENCE
29-31 llay 1984, Cairo
r

AN EXAMPLE OF APPLICAATION

The progi:am was used for solving a real problem of destribution of spare parts fr:m twelve different stores in different locations in Egypt to fifty five fac:ories. The available source capacities and the destination demands are showr in Table 1. The cost coefficients are shown in Table 2. Table 3, gives the optimal solution and the corresponding value of the objective function fior the static problem. The effect of variation in problem parameters are shown in Table 4. Fig.l shows the results of changes in unit costs corresponding to the first four rows and Fig. 2 shows the effect of changes in requirements of the first factory.

Table 1. Source capacities and distination demands

AVAILABLE SOURCE CAPACITIES	DESTINATION DEMANDS
$S(1)=12779$	$D(1)=1700$
$S(2)=6104$	$D(2)=196$
$S(33)=2322$	$D(3)=73$
$S(4)=1820$	$D(4)=25$
$S(5)=2100$	$D(5)=73$
$S(6)=15$	$D(6)=56$
$S(7)=14$	$D(7)=105$
$5(8)=179$	$D(8)=85$
$S(9)=41$	$D(9)=270$
$S(10)=17 \%$	$D(10)=50$
$S(11)=746$	$D(11)=196$
$S(12)=68$	$D(12)=88$
	$D(13)=90$
	$D(14)=607$
	$D(15)=30$
	$D(16)=20$
	$D(17)=85$
	$D(18)=52$
	$D(19)=25$
	$D(20)=17$
	$D(21)=27$
	$D(22)=241$
	$D(23)=8$
	$D(24)=15$
	$D(25)=20$
	$D(26)=22211$

ORA-2	13

Table 2. The cost coefficients.

THE COST COEFFICIENTS

	1	2	3	4	5	6	7	8	9	10	11	12	13
1	30	240	210	125	150	195	130	85	60	140	100	80	170
2	25	230	200	120	140	185	120	75	50	130	90	70	160
3	224	30	900	900	900	215	180	205	170	110	130	160	65
4	90	130	184	169	224	180	52	75	40	40	20	30	75
5	80	210	150	75	145	120	55	20	35	95	75	64	135
6	191	900	20	75	174	65	130	150	199	167	184	195	232
7	134	900	174	100	20	200	175	179	260	224	200	169	294
8	137	900	900	900	900	900	900	207	187	900	237	207	900
9	257	900	900	900	900	900	900	900	900	900	900	900	900
10	900	900	900	900	900	900	900	900	900	900	900	900	900
11	900	900	900	900	900	900	900	900	900	900	900	900	900
12	900	900	900	900	900	900	900	900	900	900	900	900	900

14	15	16	17	18	19	20	21	22	23	24	25	26
30	127	147	262	377	900	900	900	900	597	900	148	0
20	117	140	252	370	900	900	900	900	590	900	138	0
230	900	900	900	900	900	900	900	300	900	900	900	0
95	205	230	900	900	900	900	900	390	900	900	139	0
85	195	220	900	900	900	900	900	900	900	900	900	0
200	900	900	900	900	900	900	900	900	900	900	45	0
140	249	274	900	900	900	900	900	900	900	360	130	0
135	45	50	120	230	320	460	900	900	450	900	900	0
240	156	120	50	110	200	340	600	900	330	460	900	0
900	275	230	110	50	90	230	490	900	220	450	900	0
900	505	460	340	230	140	50	260	900	450	224	900	0
900	900	900	600	490	400	260	50	900	900	484	900	0

Table 3. The optimal solution.

OPTIMAL SOLUTION	
Z	$=214145$
NON ZERO VALUES OF X (I, J)	
$X(1,26)$	$=12779$
$X(2,1)$	$=1700$
$X(2,5)=$	59
$X(2,14)=$	607
$X(2,25)=$	20
$X(2,26)=$	3718
$X(3,2)=$	196
$X(3,13)=$	90
$X(3,22)=$	241
$X(3,26)=$	1795
$X(4,7)=$	105
$X(4,10)=$	50
$X(4,11)=$	196
$X(4,12)=$	88
$X(4,26)=$	1381
$X(5,3)=$	58
$X(5,4)=$	25
$X(5,6)=$	56
$X(5,8)=$	85
$X(5,9)=$	270
$X(5,26)=$	1606
$X(6,3)=$	15
$X(7,5)=$	14
$X(8,15)=$	30
$X(8,16)=$	20
$X(8,26)=$	129
$X(9,17)=$	41
$X(10,17)=$	44
$X(10,18)=$	52
$X(10,19)=$	25
$X(10,23)=$	8
$X(10,26)=$	48
$X(11,20)=$	17
$X(11,24)=$	15
$X(11,26)=$	714
$X(12,21)=$	27
$X(12,26)=$	41
$X X$,	

FIRS' A.M.E. CONFERENCE
29-31 May 1984, Cairo
Γ
Table 4. Variation in problem parameters.
CHANGES IN UNIT COSTS OF BASIC VARIABLES
LOWER LIMIT OF UNIT COST C $C(1,26)=0$ UPPER LIMIT 5
NEW BASIC VARIABLE IS $X(1,1)$
LOWER LIMIT OF UNIT COST $\mathrm{C}(2,1)=0$ UPPER LIMIT
$=30$
NEW BASIC VARLABLE IS $X(1,1)$

LOWER LIMIT OF UNIT COST C(2,5$)=28$ NEW BASIC VARIABLE IS $X(7,25)$ UPPER LIMITT $=\mathbf{1 4 5}$
NEW BASIC VARIABLE IS $X(5,5)$

LOWER LIMIT OF UNIT COST $\mathrm{C}(10,17)=50$
NEW BASIC VARIABLE IS $X(9,26)$
UPPER LIMIT $=120$
NEW BASIC VARIABLE IS $X(8,17)$

CHANGES IN UNIT COST OF NON BASIC VARIABLES
LOWER LIMIT OF UNIT $\operatorname{COST} C(1,1)=25$ RANGE $=5$ LOWER LIMIT OF UNIT $\operatorname{cosT} C(1,2)=30$ RANGE $=210$ LOWER LIMIT OF UNIT $\operatorname{COST} C(1,3)=150$ RANGE $=60$
LOWER LIMIT OF UNIT COST C(1,4$)=75$ RANGF $=50$
LOWER LIMIT OF UNIT COST C(1,5$)=140$ RANGE $=10$
LOWER LIMIT OF UNIT COST C(1,6$)=120$ RANGE $=75$

Table 4. Continued.
CHANGES IN UNIT COSTS OF ALL CELIS OF ONE LINE

CHANGES IN DEMANDS OF DESTINATIONS
CHANGE IN DEMAND OF DESTINATION NO 1 BY 1

STORE NO 1	DELTA $Z=25$
STORE NO 2	DELTA $Z=25$
STORE NO 3	DELTA $Z=25$
STORE NO 4	DELTA $Z=25$
STORE NO 5	DELTA $Z=25$
STORE NO 6	DELTA $Z=-105$
STORE NO 7	DELTA $Z=-95$
STORE NO 8	DELTA $Z=25$
STORE NO 9	DELTA $Z=-35$
STORE NOLO	DRLTA $Z=25$
STORE NOII	DELTA $Z=25$
STORE NOI2	DELTA $Z=25$

CHANGE TN DEMAND OF' DESTINATION NO $1 \mathrm{BI}-1$
...
-•
-.
CHANGE IN DEMAND OF DESTINATION NO26 BI -1

Fig.1. Results of Changes in cost of the First 4 Rows.
r

Fig.2. Changes in requirement of the first factory.
L

CONCLUSION AND FURTHER POINTS FOR RESEARCH

The presented program can be efficiently used to study the effect of changing the transportation problem parameters both in the objective function and in the constraints on the optimal solution and on the value of the objective function.

The obtained results may also be extended to be applied for the transportation problem with transhipment after its reformulation as a direct shipment transportation problem.

The parametric analysis may be used by the decision maker directly in many practical applications to adjust his decision to various changes of the problem parameters without the need to solve a new problem from the beginning.

This work can be extended in future to construct similar computer programs for the parametric study of multistage and multiobjective transportation problems.

REFERENCES

1. Abouel-Nour, A., Osman, M.S.A. and Said, A.H., "On the Parameteric Transportation Problem," First World Conference on Mathematics at the Service of Man, Barcelona, Spain, (1977).
2. El-Baradai, T. and El-Nahas, O." "The Transportation Problem", Computer Center of the American University in Cairo, Document No. 720104, (1975).
3. Dantzig, G.B.,"Linear Programming and Extensions", Princeton, New Jersy: Princeton University Press, (1963).
4. Said, A.H., "Parametric Transporation Problem Applied to Fuel Distribution," M.Sc. Thesis. Military Technical College, Cairo, Egypt, (1976).

[^0]: * Department of Motor Vehicle, M.T.C, Cairo, Egypt.
 **' Department of Mathematics, M.T.C., Cairo, Egypt.
 *** Professor, Fac. of Engineering, Zagazig University, Egypt.

