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ABSTRACT 

This paper describes a perturbation technique to perform the nonlinear 
response analysis of plate structure under random acoustic excitation. : 
In the analysis, use is made of triangular plate element together with 
a nonlinear plate stiffness element which is dependent on the modal 
response of the structure. The nonlinear plate stiffness element 
represents the coupling term between the membrane and bending deformation. 
Applying these elements and the associated consistent mass matrices, 
the equivalent linear eigen matrix of the complete plate is organized. 
The eigen solution and the following modal spectral computation completes 
the iteration cycle. A flow diagram and a numerical example are include& 
which illustrate the application of the method to practical problems. 

INTRODUCTION 

In random acoustic excitation, the structure usually exhibits a 
nonlinear behavior.' This is evident from the fact that the iegponse 
spectrum shapes change with the intensity of the excitation even though 
the pressure input spectrum shape is kept unchanged, The nonlinear 
condition may be caused 
by a number of factors including material nonlinearity, interaction of 
internal stresses and large deformation (geometrical nonlinearity). 
The nonlinearity referred to in this paper is classified as large 
deformation, A number of nonlinear acoustic techniques are known 
theoretically, among which is perturbation method called the equivalent• 
linearization technique, Its basic theory states that in a single 
degree of freedbifl system, the statistical data of the response may be 
determined by an equivalent linear system where the linear damping 
and spring constant are determined by minimizing the response 
square error.The linearization is accomplished with the assumption. that 
the external random input is stationary, Gaussian and has zero expectation. 
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Where the nonlinear strain energy U1  represents the couplin9 term between 

Membrane and bending. 
Consider a typical triangular plate element, five deflection parameters 
are used at each node, namely, the inplane deflections, the transverse 
deflection and its first derivatives. These make a total of 15 degrees 
of freedom for each eileMen.The nodal displacements may be assembled 
into a column vector Id] whose transpose is 

Li 	 W1   u 	3 	3 :4 	3 ), 	1 	w 3:41 ) )yi) 

W 	 (10) w 	W310. )112 2 v13 	w,x3 	>131 

In Eq. (10), the subscripts 1-3 denote the nodes 1-3, respectively. 
The deformation patterns within a triangular element are taken as :- 
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The inplane displacement matrix tdu
1 may be expressed as 
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The correspoding element force-displacement relationships in the global 

coordinate system is simply: 
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The consistent mass matrix for an element is used as'given in ref. (5) 

LINEARIZED MODAL ANALYSIS AND ACOUSTIC RESPONSE 

The linearized eigenvalue solutions tor the natural modes are obtained 

from Eq.(7) 
by dropping the [C ] and 	F} matrices 

[Ke  ] L Q 	Mi[C2R1/4"P 	
(23) 

Based on the modal dataithe complete Eq. (7) is now used to determine 
the modal response of the plate under random acoustic excitation. 
For this purpose. the plate deformation is represented as ;- 

[q] _ [(2
]T{ 

In order to simplify the problem, the generalized damping matrix is 
assumed to be a diagonal matrix 

f[c][Q) = 2n1(1)0J 
where 	represents the damping ratio of the kth mode 
The insertion of Eqs (24) and (25) into Eq.(7) leads to the matrix 
equation for the generalized coordinates j.(t) 

{i.1 	2 flci.oa]lilf 	 [Qf [ F 	(26) 

where F (t)1 is a column matrix of the random pressure function 
which is assumed ergodic. Thepower spectrum density of the modal 

amplitudes 1.1 maybe determined as 

[9),§ (4)1 = tz (w) -1[54 (w)ltz
* (,„ )1
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where [Z (w) is the modal impedance matrix and E0 (w)] represents the 
PSD matrix of the generalized force, For the most general case, the 
pressure input is both timewise and spacewise random. For the case 
where the pressure distribution is timewise random and spatially finite, 
the generalized. PSD force is 

[0] DITCA][0p1[A. JLQ] 	 (28). 

where tA .3 is diagonal matrix whose elementS represent the areas 
associated with the nodes, If the timewise random pressure is of the 
raindrop type with'unif 	V. 

orm intensity, then ropa  lin Eq. (28) is 

(24)  

(25)  
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-proceeding in this manner, the nonlinear 
stiffnes

matrices as shown 
s matrix is 

computed based on the rms values of the component  

below;- 
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Based on the preceding formulation, the nonlinear finite element t  the method is 
problem is handled iteratively, the flow chart showing  

given in Fig. (1). 

NUMERICAL RESULTS 

Consider the case of a rectangular plate with one edge builtin and the 
other three edges free subjected to raindrop type and uniform inten-
sity random, acoustic loading, ref. (6). The dimensions and properties 

of the plate are given as; 

a = 50 (cm) b = 30 (cm) h = 2 (mm) 

Material: duralumin 
Three acoustic load level are considered:-  

c6o = 137.9 x 10
-3 ; 	68.95 x 10

-1 ; 151.33 x 10
-1 (N/m

2
)
2/Hz. 

The grid for the finite element analysis appears in Fig.(2), The 
	. 

eigenfrequency data for the linear and nonlinear analyses using the 
first three modes of the plate corresponding to various load intens-

ties are summarized in Table (1). 

= LQ1 rs2)112 1 
	 (38) 

Nonlinear Case 
00=137.9 x 10-3  

Nonlinear Case 
co. 68.95 x 10-.1  

Nonlinear Case 
150= 151.33x10-1,  

o
(N/m

2)
2
/Hz 

Linear. Case 

Iteration 	Modes 
Number 

1 	2 	3 
........................—......._ 

	

0 	30,905 	80,958 	90,660 

	

1 	30.943 	80.969 	90,667 

	

2 	30,942 	80.971 	90,660 

	

1 	32.523 	81,538 	91.014 

	

2 	32.221 	81.495 	90.956 

	

3 	32.266 	81,506 	90.965 

	

4 	32.260 	81.506 	90.963 

	

5 	32.261 	81,507 	90.964 

	

1 	34.327 	82.224 	91.433 

	

2 	33.317 	81.982 	91.221 

	

3 	33.559 	82,062 	91.270 

	

4 	33.482 	82.070 	91.268 

	

5 	33.433 	82.080 	91.273 

Table (1) :.. Iteratd eigenfreguencies 4p Hz. L 
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NOMENCLATURE 

plate 
deformation patterns 

length of a side of the rectangular 
coefficient matrices of'the assumed 
damping matrix 
intermediate stiffness matrices 

nodal displacement matrices referred to element coordinate
:  

system. 
equivalent linearized nodal displacement matrices 

Young's modulus 
nodal force matrices referred to element coordinate system 

nodal force matrices referred to global coordinate system. 

plate thickness 
linear and nonlinear stiffness matrices 
equivalent linearized stiffness matrices 

mass matrix 
nodal displacement matrices referred to global coordinate 

system 
matrix with eigenvectors in successive columns 
Coordinate transformation matrices 

time 
kinetic energy 
transformation matrices 

inplane deformation of the plate 
strain energy 
linear strain energy 

nonlinear strain energy 

inplane deformation of the plate 

work done 
transverse deformation of the plate 
element coordinate system 
modal impedance matrix 
modal amplitude matrix 
modal force PSD matix 
acoustic pressure level 

acoustic pressure PSD matrix 

modal amplitude PSD matrix 
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Fig,l: Flow chart of finite element computer program for nonlinear 
dynamic analysis of plate. 
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