

;

NONLINEAR RESPONSE ANALYSIS OF PLATES UNDER
RANDOM ACOUSTIC EXCITATION
M.M. EL. NOMROSSY* and M.I. KHOLOUSSY*

ABSTRACI

This paper describes a perturbation technique to perform the nonlinear - response analysis of plate structure under random acoustic excitation. In the analysis, use is made of triangular plate element together with a nonlinear plate stiffness element which is dependent on the modal response of the structure. The nonlinear plate stiffness element
: represents the coupling term between the membrane and bending deformation. Applying these elements and the associated consistent mass matrices, the equivalent linear eigen matrix of the complete plate is organized. The eigen solution and the following modal spectral computation completes he iteration cycle. A flow diagram and a numerical example are included which illustrate the application of the method to practical problems.

INTRODUCTION

In random acoustic excitation, the structure usually exhibits a nonlinear behavior. This is evident from the fact that the nesponse. \quad. spectrum shapes change with the intensity of the excitation even though
: the pressure input spectrum shape is kept unchanged. The nonlinear condition may be caused
by a number of factors including material nonlinearity interaction of : internal stresses and large deformation (geometrical nonlinearity)。
: The nomlinearity referxed to in this paper is classified as large deformation. A number of nonlinear acoustic techniques are known theoretically, among which is perturbation method called the equivalent: linearization technique, Its basic theory states that in a single

- degree of freedom system, the statistical data of the response may be. determined by an equivalent linear system where the linear damping : and spring constant are determined by minimining the response
: square exxor. Whe linearization is accomplished with the assumption that the external random input is stationary, Gaussian and has zero expectation.
* Colonel Doctor, Aeronautical Department, M.T.C. ** Major General Doctor, Head of Basic subject Departments, M.T.C.
$\vdots U_{0}=\frac{E h}{2\left(1-\nu^{2}\right)} \iint_{A}\left\{u_{j_{x}}\left(u_{2 x}+\nu v_{y y}\right)+v_{y}\left(v_{y y}+\nu u_{j x}\right)+\frac{\eta-\nu}{2}\left(v_{1 x}+u_{, y}\right)^{2} ;\right.$

$$
\begin{equation*}
\left.+\frac{h^{2}}{12}\left[w_{j x x}\left(w_{1 x x}+\nu w_{J y y}\right)+w_{1 y y}\left(w_{1, y y}+\nu w_{j x x}\right)+2(1-\nu) w_{d x y}^{2}\right]\right\} d x d y \tag{8}
\end{equation*}
$$

$: U_{y}=\frac{E h}{2\left(1-\nu^{2}\right)} \iint_{A}\left[u_{\partial x}\left(w_{1 x}^{2}+\nu w_{y y}^{2}\right)+v_{y y}\left(w_{1 y}^{2}+\nu w_{1 x}^{2}\right)+(-1-\nu)\left(u_{y}+v_{1 x}\right) w_{y} w_{d y}\right] d x d y$
: Where the nonlinear strain energy U_{1} represents the coupling term between membrane and bending.
consider a typical triangular plate element, five deflection parameters are used at each node, namely, the inplane deflections, the transverse deflection and its first derivatives. These make a total of 15 degrees of freedom for each elemenf.The nodal displacements may be assembled into a column vector $\{d\}$ whose transpose is

$$
\left.\begin{array}{rl}
\{d\}^{T}=\left\{\frac{d}{d} w_{w}\right.
\end{array}\right\}^{T}=\left[u_{1}, v_{1}, u_{2}, v_{2}, u_{3}, v_{3}, 1 w_{1}, w_{2 \times 1}, w_{2 y_{1},}\right]
$$

In Eq. (10), the subscripts $1-3$ denote the nodes $1-3$, respectively. The deformation patterns within a triangular element are taken as :-

$$
\begin{align*}
u(x, y)= & A_{1}+A_{2} x+A_{3} y \tag{11}\\
v\left(x_{2}, y\right)= & A_{4}+A_{5} x+A_{6} y \tag{12}\\
w(x, y)= & B_{1}+B_{2} x+B_{3} y+B_{4} x^{2}+B_{5} x y+B_{6} y^{2} \\
& +B_{7} x^{3}+B_{8}\left(x^{2} y+x y^{2}\right)+B_{9} y \tag{13}
\end{align*}
$$

The inplane displacement matrix $\quad\left\{d_{u}\right\}$ may be expressed as

$$
\begin{equation*}
\left\{d_{u}\right\}=\left[T_{u}\right]\{A\} \quad \text { or }\{A\}=\left[T_{u}\right]^{-1}\left\{a_{u}\right\} \tag{14}
\end{equation*}
$$

where $\{A\}^{T}=\left[\begin{array}{llll}A_{1}, & A_{2}, \ldots . & A_{6}\end{array}\right]$
\vdots A similar relation between $\left\{d_{w}\right\}$ and $\{B\}$ can be written as

$$
\begin{equation*}
\left\{d_{w}\right\}=\left[T_{W}\right]\{B\} \quad \text { or }\{B\}=\left[T_{W}\right]^{-1}\left\{d_{W}\right\} \tag{15}
\end{equation*}
$$

where $\{B\}^{T}=\left[\begin{array}{lll}B_{1}, & B_{2}, \ldots ., & B_{9}\end{array}\right]$
: and $\left[T_{w}\right]$ is a 9×9 nonsingnlar transformation matrix.

The correspo:ding element force-displacement relationships in the global cooxdinate syitem is simply:

$$
\left\{\frac{F_{u}}{E_{w}}\right\}=\left\{\begin{array}{ccc}
R_{W} T & f_{u} \\
R_{W}^{T} & f_{w}
\end{array}\right\}=\left[\begin{array}{ccccc}
R_{u} T & K a a & R_{u} & 1 & R_{u}^{T} \\
\hdashline K_{W}^{\prime} a b & R_{W} \\
R_{W}^{T} & K_{a b}^{\prime} & R_{u} & 1 & R_{W}^{T}\left(K_{b b}+K_{b b}^{\prime}\right) R_{W}
\end{array}\right]\left\{\frac{q_{u}}{q_{W}}\right\} \text { (22) }
$$

The consistent mass matrix for an element is used as'given in ref. (5)
LINEARIZED MODAL ANALYSIS AND ACOUSTIC RESPONSE
The linearized eigenvalue solutions for the natural modes are obtained :
\vdots from Eq. (7)
by dropping the $[C]$ and $\{F\}$ matrices

$$
\begin{equation*}
\left[\mathrm{K}^{\mathrm{e}}\right][Q]=[M][Q]\left[\omega_{0}^{2}\right] \tag{23}
\end{equation*}
$$

Based on the modal data, the complete $E q$. (7) is now used to determine the modal response of the plate under random acoustic excitation.
(For this purpose the plate deformation is represented as $\quad \mathrm{m}$

$$
\begin{equation*}
\{q\}=[Q]^{T}\{\xi\} \tag{24}
\end{equation*}
$$

In order to simplify the problem, the generalized damping matrix is assumed to be a diagonal matrix

$$
\begin{equation*}
[2]^{T}[c][2]=2[\gamma]\left[\omega_{0}\right] \tag{25}
\end{equation*}
$$

where γ_{i} represents the damping ratio of the ith mode The insertion of Eqs (24) and (25) into Eq. (7) leads to the matrix equation for the generalized coordinates $\}(t)$

$$
\begin{equation*}
\left.\{\xi\}+2[\ddot{\square}]\left[\omega_{0}\right]\{\dot{\xi}\}+\left[\omega_{0}^{2}\right]\{ \}\right\}=[Q]^{T}\{F(t)\} \tag{26}
\end{equation*}
$$

\vdots where $\{F \quad(t)\}$ is a column matrix of the random pressure function which is assumed ergodic. Thepower spectrum density of the modal amplitudes $\}\}$ maybe determined as :-

$$
\left[\phi_{\xi}(w)\right]=\left[\begin{array}{ll}
Z & (w)
\end{array}\right]^{-1}\left[\begin{array}{ll}
\phi & (w) \tag{27}
\end{array}\right]\left[Z^{*}(w)\right]^{-1}
$$

where $[Z(\omega)]$ is the modal impedance matrix and $[\varnothing$ (w)]represents the PSD matrix of the generalized force. For the most general case, the pressure input is both timewise and spacewise random. For the case
: where the pressure distribution is timewise random and spatially finite the generalized. PSD force is

$$
\begin{equation*}
[\phi]=[Q]^{T}[A]\left[\phi_{p}\right][A][Q] \tag{28}
\end{equation*}
$$

where [A] is diagonal matxix whose elements represent the areas asscciated with the nodes. If the timewise random pressure is of the
\vdots raindrop type with uniform intensity, then $\left[\phi_{p}\right]$ in Eq. (28) is

FमKST A.M.E. CONFERENCE

Proceeding in this manner, the nonlinear stiffness matrix is
computed based on the rms values of the component matrices as shown below; -

$$
\begin{align*}
& {\left[K^{e}\right]=\left[K_{w w}\right]+\left[K_{w W}^{\prime}\left(e_{u}\right)\right]+\left[K_{u w}^{\prime}\left(e_{w}\right)\right]^{T}\left[K_{u u}\right]^{-1}\left[K_{u w}^{\prime}\left(e_{w}^{\prime}\right)\right]} \tag{36}\\
& \left\{e_{u l}\right\}=-\left[K_{u u}\right]^{-1}\left[K_{u w}^{\prime}\left(e_{w}\right)\right]\left\{e_{w}\right\} \tag{37}
\end{align*}
$$

where

$$
\left\{e_{w}\right\}=[2]\left\{\left(\zeta^{2}\right)^{1 / 2}\right\}
$$

Based on the preceding formulation, the nonlinear finite element problem is handled iteratively, the flow chart showing the method is given in Fig. (1).

NUMERICAI, RESULTS

Consider the case of a rectangular plate with one edge builtin and the \therefore other three edges free subjected to raindrop type and uniform jntenm sity random acoustic loading, ref. (6). The dimensions and properties of the plate are given ass
$a=50(\mathrm{~cm}) \quad$,
$b=30(\mathrm{~cm}) \quad, \quad h=2(\mathrm{~mm})$

Material: duralumin Three acoustic load level axe corsidered:-

$$
\begin{aligned}
& \text { ree acoustic load level axe cortsidered: } \\
& \phi_{0}=137.9 \times 10^{-3} ; 68.95 \times 10^{-1} ; 151.33 \times 10^{-1}\left(\mathrm{~N} / \mathrm{m}^{2}\right)^{2} / \mathrm{Hz}
\end{aligned}
$$

The grid for the finite element analysis appears in Fig. (2). The eigenfrequency data for the linear and nonlinear analyses using the first three modes of the plate corresponding to various load intensties are summarized in Table (1).

$A N C-3$	29

! . 5) Sheol M.G. "Stresses and deflection in circular plates due to dynamic loading", Ph.D Thesis, University of Helwan, 1982.
(6)EI NOMROSSY M.M. and Kholoussy M.I.." Acoustic response analysis of plates using the finite element method", Proceedings of the 11 th International Congress in Acoustics, Vol.5, Paris, 19-27 July 1983.

NOMENCLATURE
$\quad a, b$
$\{A\},\{B\} \quad$ length of a side of the rectangular plate
$\left[\mathrm{C}_{\mathrm{CS}}^{\prime[\mathrm{C}]}\right]$
$\left\{a_{\}},\left\{a_{u}\right\},\left\{d_{w}\right\}\right.$
$\left\{e_{u}\right\},\left\{e_{w}\right\}$
$\vdots\{f\},\left\{\mathbb{E}_{u}\right\},\left\{E_{w}\right\}$ $\{F],\left\{F_{u}\right\}_{,}\left\{F_{w}\right\}$
\vdots h plate thickness $[\mathrm{K}],\left[\mathrm{K}^{\prime}\right]$
[M] $\{q\},\left\{q_{u}\right\}\left\{q_{w}\right\}$
$[Q]$ $[R],[R][R]$ t
$\left[T_{u}\right]_{B}^{T}\left[T_{W}\right]$
u. V u
U_{0}
U_{1}

x, Y \& Z $\left[\begin{array}{c}2 \\ \{5\}\end{array}\right.$
[办]
$[\phi \xi]$
damping matrix system.

Young's modulus
mass matrix system
time
kinetic energy
strain energy work done
intermediate stiffness matrices
nodal displacement matrices referred to element coordinate;
equivalent linearized nodal displacement matrices
nodal force matrices referred to element coordinate system nodal force matrices referred to global coordinate system ;
linear and nonlinear stiffness matrices
equivalent linearized stiffness matrices
nodal displacement matrices referred to global coordinate
matrix with eigenvectors in successive columns
Coordinate transformation matrices
transformation matrices
inplane deformation of the plate
linear strain energy
nonlinear strain energy
inplane deformation of the plate
transverse deformation of the plate
element coordinate system
modal impedance matrix
modal amplitude matrix
modal force PSD matix
acoustic pressure level
acoustic pressure PSD matrix
modal amplitude PSD matrix

Fig. l: Flow chart of finite element computer program for nonlinear dynamic analysis of plate.

