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ABSTRACT

This paper describes a perturbation technique to perform the nonlinear
response analysis of plate structure under random acoustic excitation,

In the analysis, use is made of triangular plate element together with

a nonlinear plate stiffness element which is dependent on the modal '
response of the structure, The nonlinear plate stiffness element )
represents the coupling term between the membrane and bending deformation,
Applying these elements and the associated consistent mass matrices,

the equivalent linear eigen matrix of the complete plate is organized,
The eigen solution and the following modal spectral computation completes
the iteration cycle, A flow diagram and a numerical example are included
which illustrate the application of the method to practical problens,

INTRODUCTION

In random acoustic excitation, the structure usually exhibits a
nonlinear behavior., This is evident from the fact that the response - P
spectrum shapes change with the intensity of the excitation even though *
the pressure input spectrum shape is kept unchanged. The nonlinear
condition may be caused

by a number of factors including material nonlinearity, interaction of
internal stresses and large deformation (geometrical nonlinearity) .
The nonlinearity referred to in this paper is classified as large
deformation, A number of nonlinear accustic technigues are known .
theoretically, amcng which is perturbation method called the equivalent’
linearization technigue, Its basic theory states that in a single

degree of freed®m system, the statistical data of the response may be
determined by an eguivalent linear system where the linear damping - :
and spring constant are determined by minimiging the response

square error,The linearization is accomplished with the assumption that
the external random input is stationary, Gaussian and has zero expectation.
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Wherethe nonlinear strain energy Ul represents the coupling term between
membrane and bending, ‘ :
Consider a typical triangular plate element, five deflection parameters
are used at each node, namely, the inplane deflections, the transverse
deflection and its first derivatives. These make a total of 15 degrees
of freedom for each elemenfi.The nodal displacements may be assembled
into a column vectnr {d} whose transpose is

T_ (do ?’_ ;
[d} - {J;} - [u,‘,"\r_‘ s V2 s Ve s Vs Yy 2t Wy Wake 5,y
W2 Wawg o Woya 2 W3, Waxz > %oy3 | ‘(lo)

In Eg. (10), the subscripts 1=-3 denote the nodes 1-3, respectively.
The deformation patterns within a triangular element are taken as :-

u ¥ - - 11
( y Y ) A+ A, X+ Ay Y (11)
: = ¢ 1
T ( %g, v ) A4 + AS X+ A,y (12)
w (X,¥ ) =B +B  x+ By + B x2+Bxy+By2
172 3 4 5 6

<3
+ B_I,x3 + BB(xzy + xyz) + Bgy : (13)
The inplane displacement matrix {du} may be expressed as
()= [nia) or {a) =03, 178} 24)
s T
where {A} = {Al,, Bop osee "AE&]
A similar relation between {dw } and {'b} can be written as
N -1 .
{a,}= [z, 1{z} o i3} =[7]7 (a}} 1s)

where {B}T -_"[Bl,- Bopesane 4 B.;,-]

and [Tw] is a 9 x9 nonsingnlar transformation matrix.
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The correspe-ding element force-displacement relationships in the global
coordinate system is simply:

{ Tu }-{ R“T fu B RuT faz Ru RuT Kab &, % (22)
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The consistent mass matrix for an element is used as'given in ref, (5)
LINEARIZED MODAL ANALYSIS AND ACOUSTIC RESPONSE

The linearized eiQenvalue solutions kor the natural modes are obtaingd
from EqQ.(7)
by dropping the [c ] and {jF} matrices

[x*Ile] = [we]fw] (23)

Based on the modal data,the complete Eq. (7) is now used to determine
the modal response of the plate under random acoustic excitation.
For this purpose, the plate deformation is represented as ;-

(a)=CeT(S}

In order to simplify the problem, the generalized damping matrix is
assumed to be a diagonal matrix

[0 1°Lclled = 2[¥][w.] (29)

where Xi'represenﬁs the damping ratio of the ith mode
The insertion of Egs (24) and (25) into Eq.(7) leads to the matrix ..
equation for the generalized coordinates j(t)

(P} atyidiiletor] 5] = 1o (= @] e

where {F (t)} is a column matrix of the random pressure function
which is assumed ergodic, Thepower spectrum density of the modal
amplitudes{j}maybe determined as :-

(g @] = [z @'[p w]lz" @]™* (27)

where [Z (u)] is the modal impedance matrix and [¢ (u{]represents the
PSD matrix of the generalized force, For the most general case, the
pressure input is both timewise and spacewise random, For the case

where the pressure'distribution is timewise random and spatially finite,E
the generalized,., PSD force is )

[e1=[2] [r]le,ll2 ][] (28) ,

where EA ] is diagonal matrix whose elements represent the areas
associated with the nodes, If the timewise random pressure is of the
raindrop type with uniform intensity, then [¢p]in Eq. (28) is
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Proceeding in this manner, the nonlinear stiffness matrix is
computed based on the rms values of the component matrices as shown
below; =~
e - i ’ . =1 I
= ¢ K e (36)
[x ] (‘KW-1+[KW(eu)] + [kuw (ew)]T (X ) (K w (w)]
= - 3t rx’ | (37)

{eu} (Kuu1 [Kuw (ew )] {ewg

where
. -zAQ '

o, = [21L(§%)%] (ze)
Based on the preceding formulation, the nonlinear finite element '
problem is handled iteratively, the flow chart showing the method 1s
given in Fig. (1). ' :

NUMERICAL RESULTS
consider the case of a rectangular plate with one edge builtin and the ’
other three edges free subjected to raindrop type and uniform. inten-
sity random acoustic loading, ref. (6) . The dimensions and properties
of the plate are given asj i
a = 50 (cm) . b = 30 (em) ’ h = 2 (mm)
Material: duralumin
Three acoustic load level are corfsidered:-
- - -1 2.2 :
qbo = 137.,9 x 10 . : 68.95 x 10 : ; 151,33 % 10 (N/m”) /Hz.
The grid for the finite element analysis appears in Fig,.(2). The
eigenfrequency data for the linear and nonlinear analyses using the
first three modes of the plate corresponding to various load intens-
ties are summarized in Table (1).
2.2 Iteration
N Modes
o( il L Numbex Bs=a
1 2 3
Linear Case 0 30,905 80,958 90,660
Nonlinear Case i} 30,943 80,969 90,667
¢z=137.9 * 10™3 2 30.942 80.971 90.660
Nonlinear Case 1 32,523 81,538 91,014
b= 68,95 x 101 2 32,221 81,495 90,956
| 3 32.266 81,508 90,965
4 32,260 81,506 90,963
5 32,261 81,507 190,964
Nonlinear Case 1 34,327 82,224 91,433
qg= 151.33x10™% 2 33.317 81,982 91,221
o 3 33,559 82,062 91,270
4 33,482 82,070 91,268
5 33.433 82,080 91,273
Table (1):. Iterai.d eigepfrequencies in HZ, ., e



F1KkST A.M.E. CONFERENCE
ANC-31 29
] 29-31 iiay 1984, Cairo
"M
%)Shebl M,G,,®Stresses and geflection in circular plates due to

dynamic 1

6)E1 NOMROS
plates us
Internati

(s
{d}’{dgk{dw}
{eu‘z} ) {ew}

oading", Ph.D Thesis, University of Helwan, 1982,

Sy M.M, and Kholoussy M.I.," Acoustic responseé analysis of
ing the finite.element method", Proceedings of the 11 th
onal Congress in Acoustics, vol,.5, Paris, 19-27 July 1983.

'

NOMENCLATURE

length of a side of the rectangular plate
coefficient matrices of “the assumed deformation patterns

damping matrix
intermediate stiffness matrices
nodal displacement matrices referred to element coordinate,

system,
equivalent linearized nodal displacement matrices

.
.

young's modulus

E
{f},{fu}jﬁwg nodal force matrices referred to element coordinate system

(r},ir L}

h

{x1,[x"]
[ke)
M1

_éqZ,Bgﬁéng

[o]
(r1, (R \R,]
t
T
[ 1 (7,

w, v
U

nodal force matrices referred to global coordinate system

plate thickness :

linear and nonlinear stiffness matrices

equivalent linearized stiffness matrices

mass matrix :
nodal displacement matrices referred to global coordinate
system

matrix with eigenvectors in successive columns

Coordinate transformation matrices

time
kinetic energy
trénsformation matrices

inplane deformation of the plate
strain energy

linear strain enerqgy

nonlinear strain energy

inplane deformation of the plate
work done

transverse deformation of the plate
element coordinate system

modal impedance matrix

modal amplitude matrix

modal force PSD matix

acoustic pressure level

acoustic pressure PSD matrix

modal amplitude PSD matrix

L.
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Fig,l: Flow chart of finite element computer program for nonlinear
dynamic analysis of plate,
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