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4 ABSTRACT 

The Boundary Method is now well established as a valid numerical technique, 
for the solution of field problems, equal to the Finite Element Method in: 
generality and surpassing it in computational efficiency in some cases [13 
In this paper is presented a Regular Boundary Element Method as applied to 
two dimensional stress analysis. It involves the formation of a system of 
regular integral equations obtained by moving the singularity outside the 
domain of the given problem [21. It is shown that continuous elements 
may be used here after the manner of Finite Element Method [33. 

INTRODUCTION 

The manifest success of the finite element method which is one of the dom-. 
ain methods has led to progressively increased demands being made of it. : 
In particular, there is increasing pressure to use sophisticated three 
dimensional geometric models. But, the increased computing overhead in 
going from two to three dimensional is considerable so that there is some 
urgency in exploring methods which may be more efficient than the Finite 
Element Method in three dimensions. Being a Domain Method, with freedoms 
distributed over the domain of the problem, the Finite Element Method would 
appear to carry a heavy penalty when compared with a Boundary Technique such 
as the Boundary Element Method, with freedoms distributed over the boundary 
only [1 ]. 

Central to the method is the generation of Boundary Integral Equations which 
properly state the problem to be solved in terms of unknown field functions 
on the boundary only. These equations are usually obtained using the Fun-
damental solution of the given problem with the singular point located on • 
the boundary [4 J. (The equations for the interior solution are obtained 
similarly , by locating the singular point within the domain of the problem). 
There ensues an infinite system of singular surface integral equations, 
one for each boundary point (being generated by moving the singularity ar-
ound the boundary). The system is discretized by defining boundary elements, 
after the manner of finite elements, and the resulting finite system of sin-
gular integrals are evaluated, thereby giving a system of algebraic equat-
ions. 
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There are two drawbacks in the singular method(the singular point of the. *
fundamental function is taken on the boundary of the problem) as normally • used [23. 

Firstly, not only does the accurate evaluation of these sing-
*ular integrals require careful and special treatment in the neighbourhood 
of the singular point, but it may also contribute to relatively higher 
comutational cost. Secondly, the class of problems for which the method 
well defined, may be unduly restrictive because of divergence of the int-
egrals. 

In this paper it is shown that'Regular. Boundary Integral Equations' can 
quite readily be derived which also properly state the given problem. Th-
ese are obtained by the simple device of moving the singularity of the 

!fundamental solution outside the domain of the problem. The resulting sys-
tem of equations tolerates higher order singularities in the solution than 
previously and. requires no special attention to a singular integrand. 
The practicality of the method is demonstrated in two dimensional elasto-
statics. A critical comparison is made of the results obtained using the 

:new approach, the conventional approach 	and the finite element Method, for quadratic elements. 

THEORY 

The governing equation for elastostatics in terms of stress field and in 
the absence of body forces can be written as: 

6..'.. . . Cu) = 0 
13 3 	i, j E tl. , 2/ 	 (1) 

where 6.:. are the stress field components for -J1. 13 

(3-. • 
.  13,3 	)5  xj  

u 	u(x) ... displacement vector (u1, u2) 
... domain 

x 	... coordinate system 	x. 
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Equilibrium on the boundary require the satisfaction of the following boun-
dary conditions 

.. n. = t. 
13 3 	i 	i and j 	e t1,2 	(2) 

.1
4theren.a.re the direction cosines of the normal with respect to x1,x2  and 3 
t
i are tractions (surface force intensities). 

The stresses and strains are related by the constitutive relation for an 
isotropic body as: 

elj  ij ta k,k yk 	1
(u. . + u

3
. .) 1.-.1 	/1 	i and j 	1,2 	(3)  

, 
are lame's constants which can also be expressed in terms of 
the modulus of elasticity (Young's modulus)E and Poisson's ratio 
)) by ; 

Y E 

L.. 
	(1 +a1) (1 - 2V) 	 2( 1 +) ) 

	 (4) 
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`where •5 	is the Kronecker delta ij 
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Sometimes,14- is written as G which is the shear modulus. 

Substitute equation (3) into (1) we can obtain the governing equations of 
elastostatics in terms of displacements (Navier's equation): 

u(x) = 0 

The symbol Zs,* is a differential operator : 

L1*u = 	(V.u) +eq.(Du) 	 V.(V u)T  1)  

where 	is the gradient operator 

is the divergence operator 

( )T means transposition. 

(5) 

Now we can formulate the elastostatic problem as the following: 

Let us consider a vector field function u, defined over a domain J2.and on 
its boundary f'' , whi:h satisfies Navier's equation within the domain 
(Figure 1); 

0 
	

(6) 

and boundary conditions 

on rl 
on r2 (7) 

Fig, 1, Notation of elastostatic problem 

The weighted residual statement for elastostatic problems can be written 

,c((s,u)Utj  d-a= c(t-)1.)1.r. df-- f(u -1J) T. dr 	(8) 
_IL 	Ti 	

i, 
17 	

1,  

The inverse equation of (8) can be obtained [13 as the following : 

,1(IN*U*2i)uid-0- + SUti  tj  d r = ..1 TI.c . U. dl 	 (9) 	: 17 7 —11. 	In) 	r- 	1-  where 	Tti  =r (ut.) 

L.. 
	gr

(n)
U = An(V.U) +/k.n.(i7u) +etn.(Vu) 

as [1 



Cn: 

n
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Observation point (integration 
point) 

Source point (external point = 

singular point) 

• 
Tij(x,Y) u (Y) dr(Y) ij 
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U* 	'1'i .
J 
 ore weighting functions. The problem is to find a solut- 

. 
ion such the:: 

(10) 

In this way the first integral in equation (9) disappears which reduces 
the problem to a boundary problem. We need to find thetsolution to this 
homogeneous equation (10) (Navier's equation) in order to apply (9) without, 
having to integrate the first term over the domain 	, which would produce 
internal unknowns. Away of applying (9) is to use the weighting functions U* 
as the fundamental (kelvin) solution for the elasticity problem. This type 
of solution will produce, for each direction, the following equation: 

C.. (x) u, (x) + 	(x,y) u. (y) d ri(y) 	= zJ 	z. ].J 	 3 

Y) t.(Y) dr  j' 	IX, 	(Y) 	for all y6 r 	(11) 

where C.
1  (x) coefficient is due to singularities existing in the left hand 

side integrals of equation (9) . 

Equation (11) which is Somigliana's identity can be specialised for an in-
ternal ,external and a boundary point and it is the starting point for the 

:singular boundary Element Method in Elastostatics (where the singular point 
of the fundamental function is taken on - .he boundary of the problem) 

where 	C.. = r.. if x is inside --12 ( 	.=1 if i=j) 
0 	i443 

= d 	if x is on smooth '(singular method) ij 

te 6 if 	x is outside -.(1. (regular method) 

If the singular point'x' is taken outside the domain of the problem (figure 
:2 a,b), the integration by parts may again be taken with a similar result 
to equation (11), except that the integrals are regular and, in consequence, 
C vanishes and equation (11) become: 

Uij▪ (x,Y) t„D 
 (Y) dr(Y) 	(12 ) 

for x,y E iv  
Equation (12) is the starting point of the regular Boundary Element Method. 

• • • n=n 

..j 
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r 	 1 

field observation point 

x Source point 

b 

Fig. 2. singular point location 

The fundamental (kelvin) solution which satisfies the homogenous equation 
of elasticity theory (Equation 1) is : 

[  
(x.—y.) (x.—y.) 

uij(c,y) = 	+ P 	(3-0) 	 j 
 

(13) 

	

87rE(1-y )r 	i 	r2 
 

where r is the distance between x and y 

The traction components corresponding to the kelvin solution are: 

T 77(n  ) [11*. j= 
1 	 

2 	
i(y) 

7T(1-4)r 

-n.(y) 
3 	

(xi-yi) 
	 + • [(1-211) cr. , +3 

1.3 (x.-Y)(x,-y.) j 

	

1, 	3 3 	ns(y ) x 
	y 
s 	s  

r2 

i,j and s'E, 11,21 	(14) 

Let us consider the interior problem for the 2D elastostatic problem, and 
▪ suppose u and t are known for all xer. Then formula (11)gives u for all 
x6,..12. that is 

: 	 * 
• ui(x)=1.113 

	3 	13 	7 
.(x,y)t.(y) dr(y) 	- ST..(x,y) u. (y) dr(y) 	(15) 

r- 
f" 	 for all x E —A. 

• According to Hookers law, the stress tensor 6-  is given in terms of disp-
lacement, equation (3). Using u

i
, the expression (15) we can obtained 6 

as: 

• , 	/ 
• where D and S are functions of material constants ).) and E 

ij (x) = I,y) t 	r- 	j , 	, 	( 	dr(y) D
i 

 
jk(x  ' 	k Y)d (Y)  - 	"'ijk(xv) Y uk Y)  

	

( 	

I' r 

	
(16) 

/ 
(i) >' = V and E = E for plane strain 
. 	1, 	/ 	/ 2 (ii)O = 	 and E = E(1 .-.), ) for plane stress. 1+)) ,  

• 

LOCATION OF SINGULAR POINT: 

As stated earlier, in the Regular Boundary Element method the singular 
point of the fundamental solution kerrel function is taken outside the 
domain of the problem, in contrast with the conventional (singular) method 

Lyhereit is taken on the boundary. In exact arithmetic if there are q 
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freedom nodes in a model, in order to obtain a determinate algebra it is 
merely necessary to derive q linearly independent kernel functions. This 
can be achieved by choosing arbitrarily q distinct locations outside the 
domain of the problem, at which to locate the singularity. In finite ari-
themtic, it is necessary to locate the singular points reasonably close 
to the domain in order to avoid ill conditioning problems; on the other 
hand if the singular points are brought unduly close to the surface a high 
integration order must be taken near the singularity in order to maintain 
accurate integration. Clearly, this implies increased computational cost.' 
In order to obtain a systematic approach to the assignment of singular 
point location it was decided that it should be located on the outward 
normal from a freedom location, figure 2a, thereby guaranteeing q linearly 
independent kernel functions. Asystematic study was then made in order to 
determine the 'best' location of the singular point. This involves a comp-
romise between the need for nicely well conditioned algebraic equations 
and the need for moderate computer effort. It was found that optimal res-
ults were obtained if for each element the singularity was located at a 
distance from the element, along the outward normal, equal to the minimum 
distance between freedom nodes for that element. 

Once the algebraic equations (12) have been solved, and thereby the values. 
of u and t determined over the boundary surface, E"' the interior solution  
is determined as usual [3 	equations (15) and (16). 

APPLICATIONS 

Two 2- dimensional elastostatic problems are analysed using the finite el-.  
ement method,the singular and the Regular Boundary Element Method for qua-: 
dratic elements and a critical comparison of the results is made. 

Thick Walled Cyrinder Under Internal Pressure ; 

The exact solution of these plane strain. problem is well known and given 
by Lame's solution Cs 	The cylinder with inner radius r and outer rad- 
ius r

2 is considered to have free ends and subjected to uniform internal 
pressure p, with no pressure applied on the outer surface. Only a quarter 
of the cylinder is considered for analysis due to symmetry. The boundary 
conditions are specified in a way to avoid rigid body motion i.e. along 
AB zero displacement is prescribed in X direction and CD is fixed in y 
direction, as shown in (Figure 3a,b). The numerical values for the prob- 
lem are assumed to be 

r
1 = 10 mm 	r

2 
= 20 mm 	p = 2.0 daN/mm2 

The modulus of Elasticity is taken as 21000 daN/mm2 and Poisson ratio 
as 0.3. 

The boundary of the domain was divided into 12 quadratic curved elements 
in a boundary element discretization. The domain was divided into 9 quad-
ratic elements in a finite element discretization, (Figure 3a,b). 
Computed stresses and displacements at the surface and interior of the 
domain are shown in figures (4,a,b) together with known values. 

L.. 
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stress) G'r(radial 

b) Finite element discretization a)Boundary element discretization 

Figure 3. 	Thick walled cylinder - discretization. 

1.33 

Fig.4a. Radial & hoop 
stresses along A B 
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(a) 

5.a. Plate with a circular hole Figure 

(h) 

E=2.1 x 105  N/mm2  ,P = 0.3 

under uniform tension 

6;-:1 
9. 

N/mm2  

a. Finite element f1 

--- Singular Boundary M 

0 	0 0  Regular Boundary M 
6. 

5. 

2.. 

1. 
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Figure 5.b. Boundary conditions for quarter domain. 

(b) 	 (a) 

Figure 6. Boundary and Finite Element discretization. 

45 	distance along ED (mm) 

Figure 7. Stress distribution along edge ED of the plate using quad- 

ratic 
 

 elements. 
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Stress Concentration in a thin plate under uniform Tension due to a small 
Circular Hole! 

Thin plate with a circular hole in the center is subjected to a uniform 
' tensile load as shown in Figure 5a. The diameter of the hole is taken 
as less than one third of the width of the plate to produce high stress 
concentration at points xx.. Only a quarter of the plate needs to be con-
siderd because of symmetry, and is subject to boundary conditions shown 
in Figure 5b. 

The problem (plane stress) was solved by dividing the boundary into 14 
quadratic curved elements. The Finit'element discretization was 12 
quadratic elements as shown in Figure 6a,b. The curves showing stress 
distribution along DE are plotted in Figure 7. 

DISCUSSIONS and CONCLUSIONS 

A regular boundary element method for use with two dimensional stress 
analysis problems has been presented. This method has been applied using 
continuous (conventional) boundary elements having quadratic variation of 
the field quantity suported by an 3•node isoparatric quadrilateral geom- 
etric element. A subsidiary investigation showed that the singularity 	• 

: of the fundamental solution kernel function was 'best' located along 
• outward normal from a freedom node at a distance approximately equal to 

the shortest internodal distance within the element considered. 

Results obtained , using the quadratic variant of boundary element, for 
two test problems have been presented. The first, thick walled cylind-
er under internal pressure, was chosen because its solution is well known. 
Principally, it was chosen as a validity test on the coding. The mutual 
agreement for the Regular Boundary Element Method is around + 0.06 units. 

The second, plate perforated with a circular hole. Here the normal stre- 
• sses along the line ED, Figure 7, as given by the singular and regular 

methods for quadratic boundary elements were both in good mutual agree- 
. ment and agreed well with the finite element result. It is noted that 
: the boundary element stresses are consistently below the finite element 

values. 

In conclusion- the regular boundary element method presented here has 
• given accurate results for problems examined, the presence of a singul-

arity in the exact solution can be tolerated without the necessity of 
highly refined meshes near the singularity in that good solution away 
• from the singularity can be obtained. 
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