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ABSTRACT

The Boundary Method is now well established as a valid numerical technique |
for the solution of field problems, equal to the Finite Element Method in
generality and surpassing it in computational efficiency in some cases [l ]
In this paper is presented a Regular Boundary Element Method as applied to
two dimensional stress analysis. It involves the formation of a system of
‘regular integral equations obtained by moving the singularity outside the
domain of the given problem [2 ]. It is shown that continuous elements
may be used here after the manner of Finite Element Method [3] .

INTRODUCTION

The manifest success of the finite element method which is one of the dom- ,
ain methods has led to progressively increased demands being made of it.
In particular, there is increasing pressure to use sophisticated three
dimensional geometric models. But, the increased computing overhead in
going from two to three dimensional is considerable so that there is some
urgency in exploring methods which may be more efficient than the Finite
Element Method in three dimensions. Being a Domain Method, with freedoms
distributed over the domain of the problem, the Finite Element Method would
appear to carry a heavy penalty when compared with a Boundary Technique such
as the Boundary Element Method, with freedoms distributed over the boundary

.only [17.

Central to the method is the generation of Boundary Integral Equations which
Pproperly state the problem to be solved in terms of unknown field functions
on the boundary only. These equations are usually obtained using the Fun-
damental solution of the given problem with the singular point located on
the boundary [4 ] . (The equations for the interior solution are obtained
similarly , by locating the singular point within the domain of the problem).
There ensues an infinite system of singular surface integral equations,

one for each boundary point (being generated by moving the singularity ar-
ound the boundary). The system is discretized by defining boundary eléments,
after the manner of finite elements, and the resulting finite system of sin-
gular integrals are evaluated, thereby giving a system of algebraic equat-
ions. '
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Kobry E1 Kobba, Cairo, EGYPT.
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" fundamental function is taken on the boundary of the problem) as normélly
. used L2']~ Firstly, not only does the accurate evaluation of these sing-
"ular integrals require careful and special treatment in the neighbourhood

of the singular point, but it may also contribute to relatively higher i

; Comutational cost, Secondly, the class of problems for which the method
“well defined, may be unduly restrictive because of divergence of the int-

egrals,

: In this paper it ig shown that'Regular Boundary Integral Equations' can

quite readily be derived which also properly state the given problem. Th~
€Se are obtained by the simple device of moving the singularity of the
fundamental solution outside the domain of the problem. The resulting sys-
tem of equations tolerates higher order singularities in the solution than
previously and requires no special attention to a singular integrand.

The pPracticality of the method is demonstrated in two dimensional elasto-
statics. A critical comparison is made of the results obtained using the :

: New approach, the conventional approach and the finite element Method,

for quadratic elements,

THEORY

The governing equation for elastostatics in terms of stress field and in

the absence of body forces can be written as:

.

= A (1)
5,5 W =0 1,36{1,2}
where é;;j are the stress field components for L,
® 6y

ijrj B B X .
J
U = u(x) ... displacement vector (u,, u.)
1 2
L «+» domain
X -+« coordinate system xj j e 11'23

Equilibriumon the boundary require the satisfaction of the following boun-
dary conditions:

6\"1,_3. ng o=t iand i e {1,2} | (2)
where nj are the direction cosines of the normal with respect to X, 1%, and
ti are tractions (surface force intensities),

The stresses angd strains are related by the constitutive relation for an
isotropic body as:

s = 1 i - (3)
6‘13 %S Uk,k +(ju(“li,j + u, .) iand § 1,2

1] Jel

’ where‘§ i- is the Kronecker delta

3

’)&/é?k r are lame's constants which can also be expressed in terms of
the modulus of elasticity (Young's modulus)E and Poisson's ratio

Y by ;
)" _ y E ,ZW - ____E (4)

(1 +y) (1 = 2y) 201 +y)

o
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: SOmetimes,[h is written as G which is the shear modulus. —'
Substitute equation (3) into (1) we can obtain the governing equations of

{ elastostatics in terms of displacements (Navier's equation):

* ;
D u(x) =0 (5)
The symbol A * is a differential operator : i
T
A*u =NV (V.u) 447, (V) +V (V)
where {/ is the gradient operator

V- is the divergence operator

( )T means transposition.

Now we can formulate the elastostatic problem as the following:

i Let us consider a vector field function u, defined over a domain <fland on
its boundaryr' , whith satisfies Navier's. equation within the domain
(Figure 1);

A*u = O (6)

. and boundary conditions

on r,i

d
;:— on r2

a

u, =
(7)

t."

. Where r r‘l + 2 and q and -t_l_ are given. functions

Fig. 1. Notation of elastostatic problem

The[weighted residual statement for elastostatic problems can be written
as l]:

S(A*u)u#. a2 = g(t-'t')u*f. ar- f(u-ﬁ) Tt 4 (8)
. a ij rz- ij s ij r
" The inverse equation of (8) can be obtained. [lJ as the following
*U ddL ug. &, & = T*, u, d ,
S( :: +’_,S iy &5 8l J i3 ¥y (8
where =T (U* )

o

T(n)U = kn(V.U) +/un.(Vu) +/An.(Vu)

'
M
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‘ TI. are weighting functions. The problem is to find a solut=-

ion such the-:

[5* U = 0 (10)

In this way
the problem
homogeneous

1)

the first integral in equation (9) disappears which reduces
to a boundary problem. We need to find the:solution to this
equation (10) (Navier's equation) in order to apply (9) without

:having to integrate the first term over the domain , which would produce
‘internal unknowns. Away of applying (9) is to use the weighting functions U*
as the fundamental (kelvin) solution for the elasticity problem. This type

:of solution

G, .
1]

will produce, for each direction, the following equation:

)y )+ rry) ulty) ATy =
- ij j
ff
Jll;j(x,y) £ (y) af7(ty) for all ye [~ (11)

wbere C..(x) coefficient is due to singularities existing in the left hand
.51de integrals of equation {9y . 3

‘Equation (11) which is Somigliana's identity can be specialised for an in-
tgrnal s&xternal and a boundary point and it is the starting point for the
:Singular boundary Element Method in Elastostatics (where the singular point
‘'of the fundamental function is taken on the boundary of the problem)

where Q. .
: i

= &.. if x is inside_ﬂ.(gi.=l if i=3)

i

4 I o i#3
= L S;j if x 1is on smooth/"(singular method)
=0 if X 1s outside —ﬂl(regular method)

If the singular point x is taken outside the domain of the problem (figure

i3 a,b), the
to equation

integration by parts may again be taken with a similar result
(11), except that the integrals are regular and, in consequence,

C vanishes and equation (11) become:

o
jT..
13

r

( ? ) 3 7 &= .A 7
X,Y) uj(y) u/~(y) g Uij(x,y) tj(y) dr"(y) (12)

[,,~ for x,y € [’

Equation (12) is the starting point of the regular Boundary Element Method.

f\ n=n :
oY Observation point (integration

point)

Source point (external point =

singular point)

(&)

L.
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2 X Source point

t b

Fig., 2. singular point location

. The fundamental (kelvin) solution which satisfies the homogenous equation
" of elasticity theory (Equation 1) is

(x,-y, )(x Yy )
* B 1+ ¥ :
s = gty | (e g = e

: where r is the distance between x and y

The traction components corresponding to the kelvin solution are:

o (n ) [.* 1 S%47Yy
PR, y) = o y” [P, 8 e (1-23))[ n, (y) -
- [ ij] 877'(3-)J)r2 * r
(x,-v.) (x‘-y.)(x'-y.) X =Y
- e e 11 d__J LT
n, (y) [(1 2])9' 3 J n (y) .
i,§ and s'€ 11,23 (14)

. Let us consider the interior problem for the 2D elastostatic problem, and i
" suppose u and t are known for all xe[’. Then formula (ll)gives u for all
X€ 2., that is -

* %* -

u, (x) = XU..(x,y)t.(y) arw - j.T..(x,y) u, (y) af (y) (15)
ij B r ij ]
r for all x € /.

U According to Hooke's law, the stress tensor G\’i. is given in terms of disp~
lacement, equation (3). Using u, the express:.em (15) we can obtained &%
. as: .

6\’ij(x) = jDijk(x,y) tk(y)dl"(y) - fsijk(xyy) uy (¥) af (y) (16)

: ) r # /
where D and S are functions of material constants )}and E

7
(1)Y= V and E = E for plane strain
N
(ii)p =

¥
1+p and E = E(1l -y ) for plane stress.
LOCATION OF SINGULAR POINT:

. As stated earlier, in the Regular Boundary Element method the singular
¢ point of the fundamental solution kernel function is taken outside the
domain of the problem, in contrast with the conventional (singular) method

L_where it is taken on the boundary. In exact arithmetic if there are g |
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. freedom nodes in a model, in order to obtain a determinate algebra it is
'merely nNecessary to derive g linearly independent kernel functions. This
can be achieved by choosing arbitrarily g distinct locations outside the
i domain of the problem, at which to locate the singularity. In finite ari-
themtic, it is necessary to locate the singular points reasonably close
to the domain in order to avoid ill conditioning problems; on the other
; hand if the singular points are brought unduly close to the surface a high
" integration order must be taken near the singularity in order to maintain }
accurate integration. Clearly, this implies increased computational cost.:
: In order to obtain a systematic approach to the assignment of singular
point location it was decided that it should be located on the outward
nermal from a freedom location, figure 2a, thereby guaranteeing q linearly
i independent kernel functions. Asystematic study was then made in order to
determine the 'best' location of the singular point. This involves a comp=
romise between the need for nicely well conditioned algebraic equations
and the need for moderate computer effort. It was found that optimal res-
ults were obtained if for each element the singularity was located at a )
distance from the element, along the outward normal, equal to the minimum :
! distance between freedom nodes for that element.

Once the algebraic eguations (1l2) have been solved, and thereby the values
of u and t determined over the boundary surface, [~ the interior solution
is determined as usual [3.]using equations (15) and (16).

APPLICATIONS

Two 2- dimensional elastostatic problems are analysed using the finite el-
. eément method,the singular and the Regular Boundary Element Method for qua-
" dratic elements and a critical comparicson of the results is made.

Thick Walled Cylinder Under Internal Pressure ;

‘ The exact sclution of these plane strain problem is well known and given
by Lame's solution [5 ]. The cylinder with inner radius r. and outer rad-
ius r, is considered to have free ends and subjected to uniform internal ;

i pressiire P, with no pressure applied on the outer surface. Only a quarter
of the cylinder is considered for analysis due to symmetry. The boundary
conditions are specified in a way to avoid rigid bedy motion i.e. along

: AB zero displacement is prescribed in X direction and CD is fixed in y
direction, as shown in (Figure 3a,b). The numerical values for the prob-
lem are assumed to be :

2
rl = 10 mm , r2 = 20 m , p = 2.0 daN/mm
: The modulus of Elasticity is taken as 21000 daN/mm2 and Poisson ratio
" as 0.3.

The boundary of the domain was divided into 12 quadratic curved elements
in a boundary element discretization. The domain was divided into 9 quad-
ratic elements in a finite element discretization, (Figure 3a,b).

Computed stresses and displacements at the surface and interior of the
domain are shown in figures (4,a,b) together with known values.

r
i
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b) Finite element discretization a)Boundary element discretization

Figure 3. Thick walled cylindexr - discretization.

1«33

r (mm) Fig.4a. Radial & hoop

stresses along A B
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\ \ Tf 2.0 o 3.33
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-3 -2 -1 o 1 2 3 4
gr(radial stress) (hoop stress)o’t (aaN/nunz)
20 :
Fig.4b. Displacemerﬁt
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SR - \\\\t =tx=0
F =t =
"1 30 mm 110 R £ .
p— & —_— E t, (given)
s X - |y =t =0
120N g ' y Tk
X" A B
150 mm (b)
(a) E=2.1 x 10~ N/mm“ , = 0,3
Figure 5.a. Plate with a circular hole wunder uniform tension '
Figure 5.b. Boundary conditions for quarter domain.
D ) g
B
A, ' B
(b) (a)
Figure 6. Boundary and Finite Element discretization.
6%
y .2 Y {
N/mmé ]
? 8. il ‘ #—e——s Finite element M
| .8 Singular Boundary M
- r 6—~&—0 Regular Boundary M
5. F
4. -
3. F
2.
ke L
0. J. }o ! ,{x : :
15 30 45 B0 ¢ Qistance along ED (mm)
Figure 7. Stress distribution along edge ED of the plate using quad- ,
ratic elementg,
L. o
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Stress Concentration in a thin plate under unlform Tension due to a small

! Circular Hole®

Thin plate with a circular hole in the center is subjected to a uniform
tensile load as shown in Figure 5a. The diameter of the hole is taken

as less than one third of the width of the plate to produce high stress
concentration at points xx. Only a guarter of the plate needs to be con-
siderd because of symmetry, and is subject to boundary conditions shown
in Figure 5b.

The problem (plane stress) was solved by dividing the boundary into 14
guadratic curved elements. The Finite element discretization was 12 '
quadratic elements as shown in Figure 6a,b. The curves showing stress i
distribution along DE are plotted in Figure 7.

DISCUSSIONS and CONCLUSIONS :

A regular boundary element method for use with two dimensional stress
analysis problems has been presented. This method has been applied using
continuous (conventional) boundary elements having quadratic variation of
the field quantity suported by an 3-node isoparatric quadrilateral geom-
etric element. A subsidiary investigation showed that the singularity

of the fundamental solution kernel function was 'best' located along
outward normal from a freedom node at a distance approximately equal to
the shortest internodal distance within the element considered.

Results obtained , using the gquadratic variant of boundary element, for
two test problems have been presented. The first, thick walled cylind-

er under internal pressure, was chosen because its solution is well known.
Principally, it was chosen as a validity test on the coding. The mutual '
agreement for the Regular Boundary Element Method is around + 0.06 units.

The second, plate perforated with a circular hole. Here the normal stre-
sses along the line ED, Figure 7, as given by the singular and regular
methods for guadratic boundary elements were both in good mutual agree-
ment and agreed well with the finite element result. It is noted that
the boundary element stresses are consistently below the finite element
values.

In conclusion- the regular boundary element method presented here has :
given accurate results for problems examined, the presence of a singul-
arity in the exact solution can be tolerated without the necessity of
highly refined meshes near the singularity in that good solution away
from the singularity can be obtained.

REFERENCES

1- Brebbia, C.A. and walker S. (1979) Boundary Element Technigues in Eng-
ineering, Butterworths, London.

2- Patterson,C. and El Sebai, .N.A.S. (1982) A Regular Boundary Method Using
NQn-Conformlng Elements for potential Proklems in three Dimensions, In:

Boundary Element Methods in Engineering Ed. C.A. Brebbia, springr -
Verlag, Berlin, pp. 112 - 126,

3= Lachat, J.C. and Watson, J.0. (1976) Effective Numerical Treatment of
Boundary Integral Equations, Int. J. Num. Meth. Eng., 10, 991 - 1005.

4~ Watson, J.0. (1979), Developments in Boundary Element Methods-~ 1, Eds.
Banerjee, P.K and Butterfield, R., App. Sci. Publ. i



- PIRST A.M.E. CONFERENCE
MDB=g ! 106 ‘

29-31 May 1984, cairo

i 5~ Saada, A.S. (1974) Ela

sticity
Inc, New York.

Theory and Applications Pergman Press



	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10

