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ABSTRACT 

The use of plastics in manufacture is of great industrial importance to-
day. In order to make the best economic use of plastics, their mechanical 

properties must be properly determined 	. 

In this paper some analysis of elastic and viscous properties of linear 
viscoeleastic bodies are made. A simulant of a solid propellant rocket fuel 
is subjected to this study. Gottenberg(2) made some experiments to find 
the relaxation function which represent the mechanical behaviour of this 
simulant of a solid propellant rocket fuel. A procedure is proposed here 
to find the mechanical constant of each element contained in a mathematical 
model for a linear viscoelastic material using experimental data. This model 
consisting of some suitable combination of springs, and viscous dashpots. 
The mechanical functions entering the constitutive relations of the theory 
of viscoelasticity are determined by experimental and theoritical means. 
Some experiments are made to find the mechanical behaviour of an available 

viscoelastic material (PVC). 

NOMENCLATURE 

e(t) 	:Twist angle as a function of time. 
P(D),Q(D):Functions of the operator D=D/t. 
P(s),Q(s):Laplace transform of the functions P(D) & Q(D)• 

t 	:Current time. 
:variable time 0 s T 	t. 
:Spring constant. 
:viscosity coefficient of the dashpot. 

:step function 
:Dirac delta function. 
:Torque, weight. 
:Wheel radius. 
:specimen radius. 
:mean radius of the PVC specimen. 
:length of the P.V.0 specimen. 
:Wall thickness of the PVC specimen. 
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INTRODUCTION 

The classical theory of elasticity deals with mechanical properties of 
perfectly elastic solid, for which in accordance with Hook's law stress is 
always directly proportional to strain but independent of the rate 	of strain. 	The theory of hydrodynamics deals with properties of perfectly 
viscous liquids, for which in accordance with Newton's law the stress is 
always directly proportional to rate of strain but independent of the strain 
itself. There are two important types of deviations. 	First, the strain 
(in a solid) or the rate of strain (in a liquid) may 	not be 	directly 
proportional to the stress but may depend on stress in a more complicated 
manner. Such stress expressions are familiar when the elastic limit is 
exceeded for a solid. Second, the stress may depend on both the strain and 
the rate of strain together, as well as higher time derivatives of the 
Strain. Such time dependence evidently reflect a behaviour wh1Ch combines 
liquid like and solid like charactersitics and they are therefore called 
viscoelastic. 

In practice the most frequently used methods of specifications are namely, 
the step function constant stress (or creep)experiment,the constant strain 
(stress relaxation) experiment and the sinusoidial (dynamic) experiment, 
to measure relaxation modulus or compliance. It cannot be said that any 
one of the pervious methods of representation is more fundamental than the 
others, in principle they are equivalent to each other, and the relations 
between the different types of measurement (at a given temperature) are 
results of the linear viscoelastic behaviour and are given by linear viscoe-
lasticity theory 14,51 , In practice, information which may be obtained 
easily in one type of test can be obtained only with difficulty in another 
type of test. 

STRESS-STRAIN RELATIONS 

For a linear viscoelastic material in which shear strain dominate the 
deformation so that the dilatational strain can be neglected and the theory 
of nicompressible flow is valid the general isotropic linear viscoelastic 
law has the form 

P(D) sum = Q(D) eij(t) 	(1) 

where P(D) and Q(D) are linear operators of the form 

P(D) = E p D
k 
and Q(D) = 

N
Jo  q kD

k 	
(2) keo k 

and D is the time derivative ait. 	The coefficients pk and qk and the 
numbers N are in general different for each operator, although certain 
restrictions on the N's values are required to determine observed physical 
chanacteristies, sij and eij are respectively the stress and strain 
deviators defined in the usual way 

1 
sij = 	cimm6iP eij = 	

•-
S cmm (3 ij 	(3)  

where aij and Eij are the stress and infinitesimal strain tensors and 

sij = 1 if i=j and 6
ij 

= 0 if i/j 
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6 Taking the laplace transform* (L.T.) of (2) yields 
r) 

15(s) Sii(s) - 	1( .1  Pk r  El sr Si
(
j(o) = 

1  N 	N 
Sr

(k-r) 

1)(s) eij(s) 	qk rzi  	eij(o) 

If the intial condition of the problem has the form 

S
ij
(o) = e

ij
(o) = 0 then equation (4) 

(4) 

becomes 

1-5(s)
ij 	

Ns)
ij
(s) 	 (5) 

The relaxation integral form of the stress-strain relation for isotropic 

linear viscoelastic material is written as 
aeii(T) 

S—(t) = f G(t-T) 	 (6) 
1J 	aT 

where G(t) is the relaxation modulus. 
Taking the laplace transform of (6) we get 

ij
(s) = s 6(s)

ij
(s) 	 (7) 

Comparing equations (5) and (7) we obtain 

1  (8)  
s Ns)  

The compliance integral form of the stress-strain relation for 	
isotropic 

linear viscoelastic material has the form 

e• • 	

Si i( T) 

(t) = f J(t-T) 	d-c 
ij 	aT 

where i(t) is the shear compliance function. 
Taking laplace transform of eqn.(9) we get 

5.(s)=s5(s) Sij  (s ) 

comparing  this result by equation (5) then we get 

1  ,I(s) 	- 
s 	

(10) 

Q(s) 

Comparison of equations (8) and (10) gives the relation between the shear 

modulus G(t)and creep compliance J(t) in linear viscoelasticity as follows 

* L.T is a transform which converts a function f(t) of real variable t into 
a function f(s) of complex variable s=p+i by the formula 

Lf(t) = ?(s) = orc° f(t) e-st  dt. 

The function f(t) which is continuous in the range (o,..) except for some 

isolated points and has finite increase is called the original. 	The 

function f(s) is called the L.T. of the function f(t). 

(9)  
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d(s) = 1 / {S2  {;(s)} 	 (11) 

When a material exhibits linear viscoelastic behaviour its mechanical 
properties can be duplicated by a model consisting of some suitable 
combination of springs which obey Hook's law and viscous dashpots which 
obey Newtons law. 

The behaviour of the Hookean spring and Newtonian dashpot as well as that 
of their parallel (Voigt) and series (Maxwell) arrangment was already 
known. Maxwellarrangement of the two elements in series corresponds to 
an unlimited deformation under load similar to that occuring in an uncross 
linked polymer e.g. polyisobutylene . 	On the other hand , the Voigt 
arrangement providing for a maximum dispIacament limited by the 	elastic 
deformation of the spring,corresponding physically to a crass linked polymer 
(e.g. polyurthane). 

A model which prosses most of the general features of viscoelastic material 
is the typical four parameter model, Fig.1. It is a series connection of 
Maxwell and Voigt models. It is obvious that,we can obtain the mechanical 
properties of the three parameter model by letting 'ii 	in the lour parameter 
model. Voigt model can be obtained if we put ni = oo and Ei.O. 	Maxwell 
model is obtained if we consider 112 	E2 =0 in the four parameter model. 

Although the accuracy over large time intervals increases with the increase 
of the number of elements in the model but the mathematical formulae and 
computations may be unmanagable. Then we consider ,now the four'parameter 
model Fig.1 and we compute the shear relaxation modulus. The four parameter 
model is the simplest model that includes the three basic types of behaviour: 
instantaneous elasticity , delayed elasticity and viscousfiow. The 
differential equation which describe the considered four parameter model 
is obtained in the form 

E 	F 	E 
-1 	2 	1 	2e 

[1E1 E2+ (11-- + 
n2 	111 

+ --)D 	
111 '12 	

j $. (t) 
1  

El 2
)D 	2- [(---)D 	 (12) 

in2 	- 
n   

Examination of the four parameter model. 

Let us see how accurate this model represents the behaviour of some actual 
material. The selected example for actual material is the simulant of solid 
fuel tested by Gottenberg 121 , It is a polyurthane matrix containing salt 
crystals and aluminium powder. At first we find analytically the expression 
of the relaxation modulus of the considered four Parameter model and the 
check whether it fits the experimentally 121obtained curve G(t) or not. 
Comparison between equations (1) and (12) gives 

P(D).E1E2 	(E1 /n1 	/n2 	 i-(1/n02 )D2  

Q(D)=(E1E2/ni)D +(El/711 112)02  

then P(s) and Q(s) are expressed as follows 

P(s)=E1 E2  + (El/ni  Eitn2 	+(1/nin2)s2 



MDB -4 35 
41•■■•••■■•■•■•••■•■•••■••■■■1111.1■10 

FIRST A.M.E. CONFERENCE 

29-31 May 1984, Cairo 

6 Ns).(E1 E2/ni)s +(E1 /nin2 )s2  

Using equation_(8) we get the expression of the Laplace transform of the 

shear modulus G(s) as follows 

(E1 	2  E/n1  )s +(E1 /nln2) s2 
(S)= 

s E
1
E
2
+(E

1
/n

1
+E1 /n2+12/n1

)s+(1/n1
n
2
)s
2 

Let us denote 

a = ElE2/ni  , 	b = El/n102  , 	c = El  E2  

f = 1/nin2  and 	d = (E1 /n1 +E1 /neE2/n1 ) 

Then a(s) can be written as 

6(S) = (a + bs) / (c + ds + fs2) 
	

(13) 

We use the Heaitside's expansion forrnulal3lto find the original of (13) , 
i.e. to get G(t) we obtain 

[(-d+Vd2-4fc)/2fit 

[(-d-✓ 2-4fc)/2f]t 

(14) 

Let us denote the coefficient of the first term by B and the power of the 
exponent in this term by a2 and the coefficient of the last term by C and 
the power of the exponent in this term by a3, then equation (14) takes the 

form 

G(t) =Be 	+Ce at 	
a3t 	

(15) 

We shall assume that the expression(15)of G(t)Characterizes the behaviour 
of the selected above materia1121. In this case equation (15) will be the 
equation of the curve G(t) versus t obtained experimentally by Gottenberg 
121. These experimental results (Fig.2) are used to get the values of the 

constants !LC, a2 and a3. 
Four equations are necessary for determination of these four constants. 

These equations are obtained by substitution in equation (15) by four 
points ti, Gi(t)where i=1,2,3,4. The selected points are(10=4 , 156.4 105), 
(10"3 , 110.4 105), (10-2,91.4 105) and (1, 52.73 105). Substitution by 
thes values in (15) we get the for algebric equations for determination of 
B, 92, C and a3 	

-4 	-4 
156.4 10

5 
= B 8

10 a2 
+ C elli°00

-3a
aa333  

-3 
110.4 10

5 
= B e

10 a2 + C e 	(16) 

	

5 	10
-2
a2 	

-2 
91.4 10 = B e 	+ C e 

52.7310
5 

= B eat + C ea3  

G(t) c+d(-d+07fc)/f+3(-d+42-4fc)2/4f 

c+d(-d-42---4-fc)/f+3(-d-id-2.-4fc)2/4f 
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Solving these four equations by trial and error, the values of constants 
are obtained as follows 

	

B . 0.6 10
7 	

, 	a2 	- 0.01 	, 	C = 1.4 10
7 
and d = -10 

Solvability of the system of equations (16)means that the assumption that 
the curve G(t) versus (t) obtained experimentally fits equation (15) is 
right. Then equation (15) takes the form 

G(t) =(Q.6 e-Q * 01  t 	
1.4 e-10 t) 	

N/rn2 
	

(17) 

for the selected above material. 

It may be noticed that the formula (15) representing the characteristics 
of the four parameter model is similar to that obtained by fitting the 
experimental curves which represent the mechanical behaviour of the 
considered simulant of the rocket fuel. 

Analysis of Elastic and Viscous properties to analyse the elastic and 
viscous properties of the choosed material, we determine the roll of each 
element of the four element model representing the mechanical properties 
of the used material to make a quantitative analysis of the elastic and 
viscous properties of the considered viscoelastic solid propellant fuel. 
For this purpose the modulus of elasticity of the two springs El and E2 
and the viscosity coefficients 1/11 and 1/n2 are calculated. This needs 
the solution of the following equations. 

	

EE 	EE 	E- 	E 1 2 	1 , 1 	I 	2. r 
E
l 	

E
l 	E2,2 4E1E2 2 

k --  -- ) 	--) nl   

	

112 	"1 	n1 	n2 	n1 	n1n2 

	

F E. T ---E E E 	F E, 	4E. E 

	

1 	-1 	I F
. 	1 	2 1 - 1 1 2 - 	I 2 	3 	1 	1 	2 -g--- ]) 

	

nl n2 nl n2 nl 	nl nl n2 	nl n2 n1 	n1  n2 	'tnln2 n1 12 nl 

Fr
El E

1 
 E9 

 2 
	4E

1
E
2 	7 

---)j = 0.6 x 10' 	for positive sign. (18) 

	

"1 n2 ni 	n1n2 
= 1,4 x 10

7 	
for negative sign. 	(19) 

	

n1 n2 	El  El  E, 	El  E/  E, 2 4E1  E2  (_ 

	

nl n2 nl 	nl n2 nl 	n1 n2 

- 0.01 	for positive sign. 	(20) 

= 10 	for negative sign. 	(21) 

Trial and error gives the following values for ni , n2, El  and E2  as: 

-3 	. 

	

E
1 
= 4 x 10 N/m2, 	n1 = 10 	(N-s/m

2
)
-1 

	

E
2 = 7 x 10

9 
N/m

2
, 	n2  = 8.8x10

-13 
 (Ns/m?) -1 

Form these values it is clear that the delayed elastic behaviour of this 
model is more rigid than the direct elastic behaviour (7/4 times). It is 
noticed also that the direct viscosity is more than the constrained 
viscosity inducing recoverable viscous strain in the material (8.8 times). 
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EXPERIMENTAL WORK 

There are many different but equivalent means of measuring the mechanical 
properties which enter the stress strain constitutive relations. The most 
fundamental describitions of mechanical properties are probably those given 
by relaxation function and creep function. These can be determined by 
direct experimental observations. 

1 Creep Test:  

In this test the specimen, which initially is supposed to be undisturbed 
is subjected to a load which is applied as quickly as possible and varies 
in such a manner as to keep the stress at a constant value after load 
application. The resulting deformation or strain in the specimen is measured 
as a function of time elapsed since the load was first applied. If the 
instant of load application is chosen as the origin of the time scale, the 
stress in the specimen has the form 

a(t) = aoh(t) 	 (22) 

where ao  is a constant depending on the magnitude of the applied load and 
the dimensions of the specimen, h(t) denotes the Heaviside step function 
h(t)=0 for t < 0 and h(t)=1 for t >A  O. 	Since (Dh(t)/Dt)=6(t) where 6(t) 
is the Dirac delta function. 
The explicit linear form for a non-ageing viscoelastic material is 

e(t)= ft  J(t-T) 30(T)  dr 	(23) aT 

Subjecte equation(23) to step stress(22), then 

E(t)-- ao  J(t) 	 (24) 

Thus, the creep function J(t) is readily determined by dividing the measured 
strain response by known constant ao  . 

2 Description of the creep testing apparatus:  

The testing apparatus is shown in Fig.2. 	The test specimen(thin walled 
PVC cylinder) is gripped from each end by a jaw which tightened by a split 
clamping ring. To prevent the formation of the thin walled PVC cylinder 
due to clamping, a plug was fitted inside the specimen at each end. 
One of the two jaws clamping the specimen ends is fixed to the stand by 
two bolts. The other end is coupled to a spindle by means of a chuck. The 
torque is applied to the specimen through the spindle which is mounted on 
two single raw ball bearing mounted in the stand. The torque is obtained 
by a weight suspended at one of a flexible wire wounded around a wheel.The 
wheel is fixed on the spindle by means of threaded joint. 
Two pointers are fixed on the split clamping rings, to measure the relative 
rotation of one cross section with respect to the other. The two stands 
which are rigidly fixed together by two rods are fixed on the bench by 
four bolts. 

3 Angle measurements:  

It is noticed that the creep, indicating by the increase in the twist angle 
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of the PVC pipe is very small and cannot be accurately measured by the 
ordinary scale. For accurate measurement of the rotation angle, th pointer 
of the scale is connected to a displacement transducer. This transducer 
changes the displacement into an electric signal which is transmitted 
through a shielded cable to a 6-channel amplifier to amplify it and then 
to an U.V.R. The installation and electric setup of the displacement 
transducer are shown in Fig.3a, Fig.3b shows a photogtaph for the creep 
test apparatus, 

4 Test specimen: 

A long PVC thin walled tube with 3.6cm outside diameter, 0.35cm thickness 
and 55.5cm length are used. 	This specimen was machined from PVC rods 
with diameter 5cm, and reduced to 3.6cm. to avoid the outer layers. Because 
the outer layers may change their properties due to the sudden cooling 
after extrusion of the PVC rods during their production. A long specimen 
was used to avoid the effect of the clamping at the ends. During turning 
of the specimen, a small depth of cut and sharp tools are used to prevent 
overheating of the outer surface of the speciMen which change its properties. 
And also during drilling of the specimen, the feed is also made small and 
the drilling process is made intermittent to prevent over-heating of the 
inner surface of the specimen. 

5 Experimental procedure: 

The specimen is mounted in the apparatus as mentioned above and the 
displacement transducer fitted in place and.connected to the amplifier and 
U.V.R. The torque is applied by putting the required weight on the weights 
carrier. Then, the pointer rotates, moving the displacement transducer to 
record the change in the twist angle 0(t) on a senstive paper by the U.V.R. 

The torque T exerted on the specimen is calculated as follows 1---W.R.(kg.cm), 
where W the weight suspended in kgs,,and R the radius of the wheel in cms. 
T=10x7.5=82.125 kg,cm. The shear stress is To-Txr/jo. (kg/cm') , 
where r the tube radius (cms) and Jo  is the polar moment of inertia of the 
thin walled tube - 21Tr3b(ce) , (b is the thickness of tube cm,). 

J = 2 	3 x 0.35 = 12.825 cm4 then, 

T 	82.125 x 1.8/12.825 = 11,526 	kg/cm
2
, 

using equation (24) the creep compliance is 

J(t) 	y(t)/To 	 (25) 

The small shear strain y(t) is calculated fromtke measured twist angle 
e(t) as follows 

 

y(t) = rm  x 0(t)/1.. = 1.18 A 10 	0(t). 	(26) 

From the measured values of e(t) the corresponding values of y(t) are 
calculated using equation(26). 	From these values and using equation (25) 
the creep compliances are calculated. The resulting creep compliance J(t) 
are plotted in Fig,(4). 
It is noticed from Fig.(4) that, the creep compliance increase 	araduallv 

6 

aS 
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with time and after 120 minutes it has almost a constant value.The working 
period of a solid propellant fuel starts from t=0 up to t=5 or even 20 

	

minute. 	The properties of the viscoelastic material will be determined 
for the period from 0 to 120 minute. 

The first part of the curve J(t) from t=0 to t=1 is denoted by JIM and 
can be fitted with good enough approximation by a first order polynomial 
in the form 

J1 (t)=4.9x10+0.3x10
-5

t, making the Laplace transform gives 

.9x10-5 0.3x10
-5 

J
1 (s)= 

, . 	+ . 	, multiplication by s
2 

gives 
s 

	

2 	 ' 
S J

1 
 (s) = 0.3 x 10 	+ 4.9 x 10

-5 
s. 

using equation (11) the Laplace transform of the relaxation function is 

G1(s) = 	
1 	

, making the Laplace inverse gives 
4.9x10 (s+0.06) 

G
1  (t) = 20408.16 e

-0.06 t 

The second part of the curve J(t) from t=1 up to t=120 is denoted by J2(t) 
and can be fitted with good enough approximation bya first order polynomial 
in the form 

, 
J
2
(t) = 5.195 x 1Q

-5 
+ 7.07 x 10

,g 
 t. 

by the same procedure, the relaxation function of the second part has the 
form 

G2(t) = 19249.278 e'
817 x 10 	t 

Then, the relaxation function G(t) for the time range from t=0 to t=120 
minute, can be expressed as 

t G(t)=20408.16 e-0.06 	h(t)-h(t-1.0)1+19230.77 e
-1.359x10-4t

h(t-1.0) 
clt 	cot 	-1 

= A
l 
e 	Ih(t)-h(t-1.0)14-A, e 	h(t-1.0)(kg/cm2) 	(27) 

6 Experimental considerations:  

When a particular form of the experiment is suggested for determining 
material properties, attention must obviously be given to the condition 
under which the experiment can be performed. In practise, the suitablity 
of a particular mode of deformation of interest,and by the range of values 
over which functions are required. 
The creep test requires application to the specimen of a homogeneous stress 
field having the time dependent for, T(t) = Toh(t), and the applied load 
must be continuously adjusted as the area of cross section varies. Since, 
the dimensions of the specimen do not change during this test , the 
distinction between nominal and true stress does not arise, and the torque 
input and twist data are related to the stress and strain components. 
To ensure that the material remains in the linear range during test, the 
magnitude of the applied stress To must be kept within certain limit. 
In engineering applications the time scales of possible interest can vary 
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from a few microseconds to several years.The particular application which 
is investigated All determine the time scale required in the corresponding 
creep test. The time scale for the discussed here problem depends on the 
total working time of a rocket with solid propellant fuel. 

DISCUSSION AND CONCLUSION 

From the above analysis, we can say that the four parametermodel represent 
to enough approximation the viscoelastic behaviour for a typical solid 
propellant rocket fuel. Also, we can determine the roll of each element 
of the four elements model representing the mechanical properties of the 
used material to make a quantitative analysis of the elastic and viscous 
properties of the considered viscoelastic solid propellant rocket fuel. 
For this purpose the modulus of elasticity El and E2 and the viscosity 
coefficients 1/hi and 1/112 are calculated. This done by putting the 
expression (12) of al, a2, A and B equal to their values in eqn.(2), then 

E
1 
 = 4x10

7 	
N/m

2 
, 	nl  = 10

-3 	N-s/m2) 

F2  = 7x10
7 	

N/m
2
. , 	n2  = 8,8x1Q

-13 
	

(N...s/m2) ."1 

From these values it is clear that the delayed elastic behaviour of this 
model is more rigid than the direct elastic behaviour (7/4 times). It is 
noticed also that the direct viscosity is more than the constrained 
viscosity inducing recoverable viscous strain in the material (8,8 times). 
The general features of the creep function for real material(PVC) is shown 
in Fig.(4),there isa-relatively rapid increase in J(t) for small 	values 
of t, that is, after application of the load, due to the instanteous 
elasticity of the material. As t increase the slope of the curve decrease 
and as t reaches about 120 minutes the slope is approximatly zero. 
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Fig. 1- Four parameter model 

a) 

( b ) 

Fig.  3:0- Electrical setup of the displacement transducer 
b- Photograph of the creep testing arrangement 
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