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ABSTRACT

The use of plastics in manufacture is of great industrial importance to-
day. In order to make the best economic use of plastics, their mechanical
properties must be properly determined |11 .

In this paper some analysis of elastic and viscous properties of linear
viscoeleastic bodies are made. A simulant of a solid propellant rocket fuel
is subjected to this study. Gottenberg(2) made some experiments to find
the relaxation function which represent the mechanical behaviour of this
simulant of a solid propellant rocket fuel. A procedure is proposed here
to find the mechanical constant of eachelement contained in a mathematical
model for a linear viscoelastic material using experimental data. This model
consisting of some suitable combination of springs, and viscous dashpots.
The mechanical functions entering the constitutive relations of the theory
of viscoelasticity are determined by experimental and theoritical means.
Some experiments are made to find the mechanical behaviour of an available
viscoelastic material (PVC).

NOMENCLATURE
o(t) :Twist angle as a function of time.
P(D),Q(D):Functions of the operator D=3/3t.
P(s),Q(s):Laplace transform of the functions P(D) & Q(D).
£ :Carrent time.
T :variable time 05 v s t.
E :Spring constant.
1/n :viscosity coefficient of the dashpot.
h(t) :step function
§(t) :Dirac delta function.
T, w :Torque, weight.
R :Wheel radijus.
r :specimen radius.
m :mean radius of the PVC specimen.
L :1ength of the P.V.C specimen.
b :Wall thickness of the PVC specimen.
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Faculty of Engineering, Assiut University.
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INTRODUCTION

The classical theory of elasticity deals with mechanical properties of
perfectly elastic solid, for which in accordance with Hook's Taw stress is
always directly proportional to strain but independent of the rate of
strain.  The theory of hydrodynamics deals with properties of perfectly
viscous Tiquids, for which in accordance with Newton's law the stress is
always directly proportional to rate of strain but independent of the strain
itself. There are two important types of deviations. First, the strain
(in a solid) or the rate of strain (in a Viquid) may not be directly
proportional to the stress but may depend on stress in a more complicated
manner. Such stress expressions are familiar when the elastic limit 1s
exceeded for a solid. Second, the stress may depend on both the strain and
the rate of strain together, as well as higher time derivatives of the
strain. Such time dependence evidentiy reflect a behaviour whith combines
Tiquid Tike and solid 1ike charactersitics and they are therefore called
viscoelastic.

In practice the most frequently used methods of specificatijons are namely,
the step function constant stress (or creep)experiment,the constant strain
(stress relaxation) experiment and the sinusoidial (dynamic) experiment,
to measure relaxation modulus or compliance. It cannot be said that any
one of the pervious methods of representation is more fundamental than the
others, in principle they are equivalent to each other, and the relations
between the different types of measurement (at a given temperature) are
resutts of the Tinear viscoelastic behaviour and are given by 1inear viscoe-
lasticity theory |4,5], In practice, information which may be obtained
easily in one type of test can be obtained only with difficulty in another
type of test,

STRESS-STRAIN RELATIONS

For a linear viscoelastic material in which shear strain dominate the
deformation so that the dilatational strain can be neglected and the theory
of nicompressible flow is valid the general jsotropic linear viscoelastic
law has the form

P(D) s33(t) = Q(b) e;(t) (1)
where P(D) and Q(D) are linear operators of the form
N k _ N k
P(D) —kEO P D™ and Q(D) “kEO qD (2)

and D is the time depivative 3/3t. The coefficients py and q and the
numbers N are in general different for each operator, aithougﬁ certaijn
restrictions on the N's values are required to determine observed physical
Characteristies, s;: and €jj are vrespectively the stress and strain
deviators defined 1n the usuil way

- 1 _ 21
i3 7057 3 mlig iy T ST 3Em Sy (3)
where 993 and €jj are the stress and infinitesimal strain tensors and

51j =1 if i=j and 51j =0 if i#j
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Taking the laplace transform* (L.T.) of (2) yields

- N N (k=r
CRICR LR Rt
7 - 1 N N (k-r;
Q(s) ejj(s) "3 k£1 A FE] S eij(o (4)

[ the intial condition of the problem has the form
Sij(o) = eij(o) = 0 then equation (4)
becomes

P(s) §1j(5) = Q(s) éij(s) (5)

The relaxation integral form of the stress-strain relation for isotropic
Tinear viscoelastic material is written as
t aeij(T) ’ e
1.J-(t) —df G(t-1) —5— dr (6)
where G(t) is the relaxation modulus.
Taking the laplace transform of (6) we get

S

§1J(s) =s G(s) éij(s) (7)
Comparing equations (5) and (7) we obtain _

B(s)=1 _Qiil_ 8

G075 B | (8

The compliance integral form of the stress-strain relation for  isotropic
1inear viscoelastic material has the form

(1)

3S
E3(tm1) e dr (9)

eij(t) =‘§

where J(t) is the shear compliance function.
Taking laplace transform of eqn.(9) we get

eij(s) =s J(s) Sij(s)
comparing this result by equation (5) then we get

3(s) = 7’3{-3* (10)

Comparison of equations (8) and (10) gives the relation between the shear
~ modulus G(t)and creep compliance J(t) in linear viscoelasticity as follows

*L.T is a tranéform which converts a function f(t) of real variablet into
a functjon f(s) of complex variable s=p+i by the formula

Lf(t) = F(s) =0f°° f(t) e'St dt,
The function f(t) which is continuous in the range (0,4) except for some
isolated points and has finite increase 1is called the original. The
function f(s) is called the L.T. of the function f(t).



FIRST A.M.E. CONFERENCE

Be
HDB=4 4 29~31 May 1984, Cairo

J(s) =1 /1s°

G(s)} (1)

When a material exhibits 1lingar viscoelastic behaviour its mechanical
properties can be duplicated by a model consisting of some suitaple
combination of springs which obey Hook's law and viscous dashpots which
obey Newtons law.

The behaviour of the Hookean spring and Newtonian dashpot as well as that
of their parallel (Voigt) and series (Maxwell) arrangment was already
known. Maxwellarrangement of the two elements in series corresponds to
an uniimited deformation under load similar to that occuring in an uncross
Tinked polymer e.g. polyisobutylene . On the other hand , the Voigt
arrangement providing for a maximum displacament 1limited by the elastic
deformation of the spring,corresponding physically to a cross 14nked polymer
(e.g. polyurthane).

A model which prosses most of the general features of viscoelastic material
is the typical four parameter model, Fig.1. It is a series connection of
Maxwell and Voigt models. It is obvious that,we can obtain the mechanical
properties of the three parameter model by Tetting n] = in the Four parameter
model. Voigt model can be obtained if we put nj =w and E1=0. Maxwell
model is obtained if we consider No=w, E2=0 in the four parameter model.

Although the accuracy over large time intervals increases with the increase
of the number of elements in the model but the mathematical formulae and
computations may be unmanagable. Then we consider Now the four ' parameter
model Fig.1 and we compute the shear relaxation modulus. The four parameter
model is the simplest model that includes the three basic types of behaviour:
instantaneous elasticity , delayed elasticity and viscousflow. The
differential equation which describe the considered four parameter model
is obtained in the form

[EE, + (El Lo, Eﬁ)o #(——)D%7 S, ,(t) =
172 n]E rnz n1E UrRP) 1J
B2, Bl on
[( m )D + n]nz)D ] E‘._ij(t) (12)

Examination of the four parameter model.

Let us see how accurate this model represents the behaviour of some actual
material, The selected example for actual material is the simulant of solid
fuel tested by Gottenberg |2| . It is a polyurthane matrix containing salt
crystals and aluminjum powder, At firstwe find analytically the expression
of the relaxation modulus of the considered four parameter model and the
check whether it fits the experimentally |2| obtained curve G(t) or not.
Comparison between equations (1) and (12) gives

P(D)=EyE, + (Eq/ny +Eq/ny+Ep/ny)D +(1/nqny)DP
[2]
Q(D):(E] Ez/n] )D +(E1/n] nz)DL

then B(s) and Q(s) are expressed as follows
2

P(S)=EyEy + (Eq/ny +Eq/my + Ep/ny)s +(1/nqn,)s
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0(s)=(EyEp/ny)s +(Ey/myng)s®

Using equation_(8) we get the expression of the Laplace transform of the
shear modulus G(s) as follows
2
(E1E2/n])5 +(E1/n1n2) s~

Q(s)= p;
S E1E2+(E]/n1+E1/n2+E2/n])s+(]/n]n2)s

Let us denote

a E1E2/n] ’ b = E]/ﬂ]nz ’ c = E]EZ ’

f

it

]/n]nz and_ d = (E1/N]+E]/WZ+E2/H])
Then G(s) can be written as
&(s) = (a + bs) / (c * ds + fs°) (13)

We use the Heayiside's expansion formula|3|to find the original of (13) ,
j.e. to get G(t) we obtain

6(t)= — atb(-d+/d2-4fc)/2f [(-aw/dZate) /2f ]t
ctd(~d+/d2-4fc)/f+3(~d+/a2-4fc)2/4f .
N _ab(~d-/d%-4fc)/2f | e[(-d~/d2-4fc)/2f]t

c+d(~d-/A2-87C )/ F+3(~dw/d2-dfc)2/4f
| (14)

Let us denote the coefficient of the first term by B and the power of the
exponent in this term by ap and the coefficient of the last term by C and
the power of the exponent in this term by a3, then equation (14) takes the
form
ast

G(t) =B e 2" +Ce (15)
We shall assume that the expressijon(15)of G(t)Characterizes the behaviour
of the selected above materiall|2. In this case equation (15) will be the
equation of the curve G(t) versus t obtained experimentally by Gottenberg
- J2]. These experimental results (Fig.2) are used to get the vaiues of the
constants B,C, ap and a3.
Four equations are necessary for determination of these four constants.
These equatjons are obtained by substitution in equation (15) by  four
points tjy, Gj(tgwhere i=1,2,3,4. The selected points are(10#, 156.4 10%),
(10~3, 110,4 105), (107 2,91,4 105) and (1, 52.73 10%).  Substitution by
thes values in (15) we get the for algebric equations for determination of
B, q2, C and a3

1564 1P = B S0 22 4 ¢ Gl0 2

110.4 105 = B o102 , ¢ 10723 (16)
91.4 10° = B\e10'2a2 . e10‘2a3

52.7310° = B 22 + C e
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Solving these four equations by trial and error, the values of constants
are obtained as follows

B=0.610 |, a,=-001 , C=1.410" andd = -10

Solvability of the system of equations (16)means that the assumption that
the curve G(t) versus (t) obtained experimentally fits equation (15) is
right. Then equation (15) takes the form

6(t) =(0.6 40T T yq 4 o710ty 07 /02 (17)

for the selected above material.

It may be noticed that the formula (15) representing the characteristics
of the four parameter model is similar te that obtained by fitting the
experimental curves which represent the mechanical behaviour of the
considered simulant of the rocket fuel,

Analysis of Elastic and Viscous properties to analyse the elastic and
viscous properties of the choosed material, we determine the roll of each
element of the four element model representing the mechanical properties
of the used material to make a quantitative analysis of the elastic and
viscous properties of the considered viscoelastic solid propellant fuel.
For this purpese the modulus of elasticity of the twe springs Ey and Ep
and the viscosity coefficients T/n1 and 1/n2 are calculated. This needs
the solution of the following equations.

BB BB R B & E Ey 2 4EE, 2
el k. (= + — + -£) 4 L= + ==+ =) -
N i - T R 112 , N
Ey Ey E, B, E) E; _E; Eq E, o AE.F E, E, E, ©
E.E --——-..(..l.}.._.!n ....g) _l+_g+_1+l(._']+_..1+_£' . 12 é.{. 3 .—-I-,--.l\-—.z.i
2 myng m g Ty oy Ty T, TR R, TR, e, m
. Ey E; E, 2 4E.E .
+ (ﬁl+ﬁl+ﬁg) . n?nz)]% = (.6 x IOf for positive sign. (18)
1720 V72 = 1.4 x 10/ for negative sign., (19)
mup By By By By EE, o 4EE,
(- n-;....é) [(' 1{....14...3) & .i+.q..‘ln+...?:) ...._.i...g) ]—_:

= 0.01 for positive sign. (20)

10 for negative sign. (21)

Nos E] and E2 as:
1

i

Trial and error gives the following values for s

E 1073 (Nes/m?)”

1
i

;=4 x 10° w/ml, ,

E, =7 x 10° N/m2, ny = 8.8x10713 (N-s/m?)”]

2

Form these values it is clear that the delayed elastic behaviour of this
model is more rigid than the direct elastic behaviour (7/4 times). It is
noticed also that the direct viscosity 1is more than the constrained
viscosity inducing recoverable viscous strain in the material (8.8 times).
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EXPERIMENTAL WORK

There are many different but equivalent means of measuring the mechanical
properties which enter the stress strain constitutive relations. The most
fundamental describitions of mechanical properties are probably those given
by relaxation function and creep function. These can be determined by
direct experimental observations.

1 Creep Test:

In this test the specimen, which initially is supposed to be undisturbed
is subjected to a load which is applied as quickly as possible and varies
in such a manner as to keep the stress at a constant. value after load
application. The resulting deformation or strain in the specimen is measured
as a functjon of time elapsed since the load was first applied. If the
instant of load application is chosen as the origin of the time scale, the
stress in the specimen has the form

o(t) = oyh(t) (22)

where o, is a constant depending on the magnitude of the applied load and
the dimensjons of the specimen, h(t) denotes the Heaviside step function
h(t)=0 for t < 0 and h(t)=1 for t >, 0. Since (ah(t)/at)=8(t) where .§(t)
is the Djrac delta function. '

The explicit 1inear form for a non-ageing viscoelastic material is

- e(t) =6I't J(t-1) —agl(TlL dr (23)

~Subjecte equatfon(23) to step stress(22), then

Ce(t) = o J(t) (24)

Thus, the creep function J(t) is readily determined by dividing the measured
strain response by known constant Ty

2 Description of the creep testing apparatus:

The testing apparatus is shown in Fig.2. The test specimen(thin walled
PVC cylinder) is gripped from each end by a jaw which tightened by a split
clamping ring. To prevent the formation of the thin walled PVC cylinder
due to clamping, a plug was fitted inside the specimen at each end.

One of the two jaws clamping the specimen ends is fixed to the stand by
two bolts. The other end is coupled to a spindle by means of a chuck. The
torque is applied to the specimen through the spindle which is mounted on
two single raw ball bearing mounted in the stand. The torque is obtained
by a_weight suspended at one of a flexible wire wounded around a wheel.The
wheel is fixed on the spindle by means of threaded joint.

Two pointers are fixed on the split clamping rings, to measure the relative
rotation of one cross section with respect to the other. The two stands
¥h1chba;e rigidly fixed together by two rods are fixed on the bench by
our bolts.

3 Angle measurements:

It is notjced that the creep, indicating by the increase in the twist angle
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of the PVC pipe is very small and cannot be accurately measured by the
ordinary scale. For accurate measurement of the rotation angle, th pointer
of the scale is connected to a displacement transducer. This trans@uceg
changes the displacement into an electric signai which is transmitted
through a shielded cable to a 6-channel amplifier to amplify it and then
to an U.V.R. The instailation and electric set-up of the displacement
transducer are shown in Fig.3a, Fig.3b shows a photogtaph for the creep
test apparatus.

4 Test specimen:

A long PVC thin walled tube with 3.6cm outside diameter,
and 55,5cm length are used. This specimen was machined from PVC rods
with diameter 5Scm, and reduced to 3.6cm to avoid the cuter fayers. Because
the outer layers may change their properties due to the sudden cooling
after extrusion of the PVC rods during their production., A l¢ specimen
was used to avoid the effect of the clamping at the ends. During tu
of the specimen, a small depth of cut and sharp tools are used to prevent
overheating of the outer surface of the specimen which change its properties.
And also during driiling of the specimen, the feed is also mede small and
the drilling process is made intermittent to prevent over-heating of the
inner surface of the specimen.

M YE - X UL (. P
meter, U.oacm thickness

(’8":"'
chii

5 Experimental procedure:

The specimen is mounted 1in the apparatus as mentioned above and the
displacement transducer fitted in place and. connected to the amplifier and
U.V.R. The torque is applied by putting the required weight on the weights
carrier. Then, the pointer rotates, moying the displacement transducer to
record the change in the twist angle e(t) on a senstive paper by the U.Y.R,

The torque T exerted on the specimen is calcuiated as follows T=W.K.(kg.cm),
where W the weight suspended in kgs.,and R the radius of the wheel in cms.
T=10x7.5=82.125 kg,cm. The shear stress is 10=Tar/Jdo. (ka/cm?),

where r the tube radius (cms) and Jo is the polar moment of inertia of the
thin walled tube = 2wr3b(cat), (b is the thickness of tube cm., ).

o = 27(1.8)° x 0.35 = 12.825 en®  then,
T, = 82,125 x 1.8/12,825 = 11,526  kg/cni’.

using equation (24) the creep compliance is expressed as

D)

i

It) = y(t)/x, . (25)

The small shear strain v(t) is calculated from the measured twist angle
o(t) as follows

v(t) = r xo(t)/L = 1.18 % 107 o(t). {

6)
i

(pe)

From the measured values of o(t) the corresponding values of y(t) are
calculated using equation(26). From these values and using equation (25)
the creep compliances are calculated. The resulting creep compliance J(t)
are plotted in Fig.(4).

It is noticed from Fig.(4) that. the creen compliance incresce  aradually
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with time and after 120 minutes it has almost a constant value.The working
period of a solid propellant fuel starts from t=0 up to t=5 or even 20
minute. The properties of the viscoelastic material will be determined
for the period from 0 to 120 minute.

The first part of the curve J(t) from t=0 to t=1 is denoted by Jy(t) and
can be fitted with good enough approximation by a first order polynomial
in the form

J](t)=4.9x10'5+0.3x10'5t, making the Laplace transform gives

4.9x1078 0.3x107°

S S2

0.3 %1072 +4.9 x 1072 s.

Jq(s)= + » multiplication by_s2 gives
s29,(s)

using equation (11) the Laplace transform of the re1axatipn function is

G1(s) . ]_5 » making the Laplace jnyerse gives
4.9x10 “(s+0.06)

G,(t) = 20408.16 ¢70-00
The second part of the curve J(t) from t=1 up to t=120 is denoted by Jo(t)
and can be fitted with good enough approximatjonbya firstorder polynomial
in the form ‘

J,(t) = 5.195 x 107 + 7.07 x 107 ¢,

by the same procedure, the relaxation functjon of the second part has the
form

-4
Gy(t) = 19249.278 ¢ 2-817 x 107 ¢

Then, the relaxation function G(t) for the time range from t=0 to t=120
minute, can be expressed as
4

6(t)=20408.16 e™0+98 t h(t)-n(t-1.0)|+19230.77 ¢71-359%10
cqt cot 2.~1
= A e lh(t)-h(t-1.0)|+A2 e © h(t-1.0)(kg/cm™) = (27)

Ch(t-1.0)

6 Experimental consjderations:

When a particular form of the experiment is suggested for determining
material properties, attention must obviously be given to the condition
under which the experiment can be performed. In practise, the suitablity
of a particular mode of deformation of interest,and by the range of values
over which functions are required. .

The creep test requires application to the specimen of a homogeneous stress
field having the time dependent for, (t) = Toh(t), and the applied 1load
must be continuously adjusted as the area of cross section varijes. Since,
the dimensions of the specimen do not change during this test , the
distinction between nominal and true stress does not arise, and the torque
input and twist data are related to the stress and strain components,

To ensure that the material remains jn the 1linear range during test, the
magnitude of the applied stress To must be kept within certain 1limit.

In engineering applications the time scales of possible interest can vary
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from a few microseconds to several years.The particular application which
is investigated will determine the time scale required in the corresponding
creep test. The time scale for the discussed here problem depends on the
total working time of a rocket with solid propellant fuel.

DISCUSSION AND CONCLUSION

From the above analysis, we can say that the four parameter model represent
to enough approximation the viscoelastic behayiour for a typical solid
propellant rocket fuel. Also, we can determine the roll of each element
of the four elements model representing the mechanical properties of the
used material to make a quantitative analysis of the elastic and viscous
properties of the considered viscoelastic solid propellant rocket fuel,

For this purpose the modulus of elasticity FE7 and E2 and the viscosity
coefficients 1/n1 and 1/n2 are calculated, This done by putting the
expression (12) of ay, a2, A and B equal to their yalues in egn.(2), then

E; = 4x10”  wm? ny = 1073 (N-5/m%)"1
By = 7x107 NP, o, = 8.8x10710 (N-s/n?)”]

From these values it is clear that the delayed elastic behaviour of this
model is more rigid than the direct elastic behaviour (7 /4 times). It is
noticed also that the direct viscosity is more than the constrained
viscosity inducing recoverable yiscous strain in the material (8.8 times).
The general features of the creep function for real material(PVC) is shown
in Fig.(4),there isa relatively rapid jncrease in J(t) for small  values
of t, that is, after application of the load, due to the 1instanteous
elasticity of the materijal. As t increase the slope of the curve decrease
and as t reaches about 120 minutes the slope is approximatly zero.
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Fig. 1. Four parameter model .
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