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BASIC CONCEPTS IN MODAL ANALY.IS

Dr. SAAD A. ZAGHLOOL®

ABSTRACT

Modal analysis is the presentation of the dynamic properties

;of a gystem in terms of the contributions due to the indepen-
‘dent modes of vibration of the system. This method of analysis

is powerful and has become very useful in the analysis of

.experimental test data due to recent developmeny 3 in regl
:time frequency analysis and digital data processing. This

paper outlines the recent developments of the methgd w@th
main emphasis is placed on the use of this approach in

.analysing the dynamic performance of complex systems and in
:solving their design problems.

INTRODUCTION

‘Modal analysis is the technique of measuring the general vib=
‘ration of a structure [1,2) to determine its characteristic

modes of vibration. Each mode of vibration and its associa-
tea natural frequency are unique properties of the structure.

-The value of modal analysis lies in its ability to determine

the relative motion of points on the structure when a reso-
nant frequency is excited. With this information, a redesign
of the structure becomes possible such that the problem mode"

-of vibration is correctly taken into account.

This paper describes the theoretical foundations and assump--

. tions underlying most of the minicomputer-based Nodal Analy-’
-8is systems. These systems allow the determination of modes

of vibration directly from vibration measurements and provide

.dynamic modeling and design synthesis based on this vibration
- data.

EQUATIONS OF LOTION

‘The number of coordinates required to describe the vibration
~of the structure as well ac the number of eXpeprimental res-
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ponse measurements needed from the structure is known as the
‘number of degrees of freedom n. Considering matrix notation,,
the equations of motion for a linear system take the form

(M) x(t) +0C] x(t) + [K] x(t) = £(t) (1)

£(t) vector of input forces

x(t) = dynamic response vector

[ M] = mass matrix

L Cl = matrix of damping coefficients

[ K] = matrix of stiffness coefficients.

:The vector f(t) represents the time varying force load applied
to each degree of freedom of the structure. In an experimental
sitution it is often convenient to excite the structurs at
:only one point, in one direction. The mass, stiffness and
damping matrices[M],[K}, and (C] are all assumed to be n x s 8
symmetrical and non-singular. The stiffness and damping mat-
Xices in general have off diagonal enteries which provide coup-
‘ling:between coordinates. It is a fundamentel result of the
study of linear differential equations like (1) that this coup-
:ling arises only from the choice of coordinates x used to desg-
'cri%e the model. Another set of coordinates exists which, if
used instead of x, would yield a set of n individual equations
each with one unknown, rather tha. the coupled set of equationg
(1) (if the damping matrix has a special form). The dynamic
response of each of these special coordinates is &iven by the,
single mass, spring and damper equation of motion: :

m q(t) + ¢ q(t) + k q(t) = f(t) (2)

]

F(t) input force

1 (t) = dynamic response
m = mass
c = damping coefficient
K = stiffness coefficient.

For a general symmetric damping matrix, equation (1) may still
be decoupled with the proper choice of 2n special coordinates
iL13). The two cases of dam)ing matrices are referred to as "pro=
portional" or "Rayleigh" damping and "non-proportional" dam-
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.ping. The special coordinates are, of cource, the modal
‘coordinates of the structure. The oscillation of each modal
coordinate. is completely independent of all the other coordi-
.nates. They may be considered separate one-degree of freedom
‘systems, each with its own natural frequency. This property
of the modal coordinates is known as the "orthogonality" of :
mode shapes. The modal coordinates g of a structure are rela-
‘ted to the original coordinates X by the equation

q = [A] x. (3)

.The rowsof (A] dictate the amount of each element of X which
‘forms one modal coordinate, for example

q) = aj)1x: + a-::{: + o a. + alnXnp - (4)

i

:The vector gI is called a mode shape vector. It is the gosl
‘of modal analysis to determine these vectors. The matrix (A)
is determined by the requirement that it decouple equation (1)
:The first step is to invert equation (3), substitute for x in
(1), and multiply both sides by [A] to obtain: -

-

[A] (M1 [A"'g + [alCcl[al™lg+[AlJCKRICA

Kl
L0
Il
=
o
[
re

:This set of equations will consist of independent single deg:
ree of freedom differential equations only if the matrix pro-

ducts (4] (u] (a)71, (a) (€] (A)72, ana (a) (k) (A}~ result .
‘in diagonal matrices. No single matrix [A) can diagonalize th-
ree general matrices (M],(CJand [K];[4). However, two of the

three may be diagonalized, say (M) and [K]. :

PROPORTIONAL DALPING

If the third matrix (C) is a linear combination of (M] and [K)
‘it too will be diagonalized by [A).

[C] =a [M]+ 3[K] (6)

where o and B are arbitrary real numbers. An important proper-
'ty of [4) is that for real and symmetric matrices (M) and [K],
it can be normalized such that its transpose is equal to its
inverse, that is

[ 41t = [&3-l, ' (7)

:‘Therefore, an orthogonal matrix (A) exists such that equatioﬂ
(5) takes the following diagonalized form:

D(mi)§ + D(cidg + D(kj)q = [AJE(c). (8)
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where D(ci, = a D(my) + 8 D(ky). (9)
It is also possible to determine the response of the structure

.frequency by frequency. A typical equation of (8) with a sinu-
‘"soidal forcing function is written as

L _o - T :
miqi + cjqi + kjqy= a; F(w)el~t (10)

where F(w) is the vector of Fourier transforms calculated from
“f(t). Equation (10) has the well-known solution:

|
ta
4
-

qi(t yw) = - o _ (11)
(ki-wmj)+j(wcy)

:This is the response of the modal coordinate qy to a SlﬂUSOl;
dal force with frequency w. The vector F(w) in general has
complex elements, and equation (11) can be written as

; T ‘ il a-o+.t]
qi(t1-) = fd- F(d}: c]’ ) o

[k

(ki- \u‘Fll) + (g )~

where
\

) -1/.T - \ -1 b
3(w) = tanfaj Im{F(w)) 18nd : () = tan

T e \ . -
aj3 Rettk Cao ) it K=o -m

The real response of this coordinate q at w is the real part
of (12) times 2 where the factor 2 reflects the contribution:

:of F(-w). An excitation at the particular frequecy W, defined
by:

g = (13)

:has the real refponse

qi(tswe) = 2la; F(w)l cos (a(w, )~ =5 = L)

. (14)

Notice that this response lags behind the force by OOO. Also,

:we see that the magnitude of q, increases as its damping C,
decreases. Undamped, this cooralnate will theoretically
L.
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.make infinitely large excursions. This is known as resonance,
‘and W, is the resonant frequency of q -

.The total response of q4 to the general excitation g? f(t) is
‘obtained by integrating™ its frequency response, equ&tIon (12),
over all frequencies ;

- T juwt

S T =20 -
(kj~w®my) + J(whi)

i (15)

‘This equation can be viewedas the inverse Fourier tnPnsform of
a product of two Fourier transforms. One factor is a4 Fw)
:and the other is

Rylud = l (16)

ki—w‘mi+j(mci)

The convolution theorem (5] says that in this situation, equa-
.tion (12) is equal to the convolution of a; I(t) and h, (t)
‘given by

q;(t) = / §1T £(tr) hy(e-1) d- (17)

-

where h_ (t) = -/ Hi(»)ej“t o (18)

- 0

This function h,(t), the inverse transform of H.(w), is called
the impulse response of Q;« It is the total reéponse of q.
to a unit impulse excitat}on,d(t). *

The solution of equation (18) for the modal coordinate q. is
given by ’

0 1F &
_ =3t i - 3 o) %
hi(t) = ?? [}Judt - JadtJ = n.:Twm sin (»d[) (19)
L ] w a
d
Where g = El . = E { s €
- and Yy —1_ (» i ) . (20)
Zmi v m, 2my

The impulse response h (t) and its Fourier transform H. (W) are
Jimportant functions reﬁresenting the dynamic charactertstics .
:0f a linear system. Equation (16)(or (12)) can be viewed as '
8 process which uses the impulse response to convert the force
ilnput into a response output. The function Hi(“)-is called j
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.the transfer function of the modal coordinate q.,. The functions
‘h,(t) and Hi(w) are basic properties of a lineat system and can
b& measured™ either as the response to an impulse or as the
:ratio of the Fourier transforms of measured input and response.
Experimental modal analysis uses the techniques of signal pro-
cessing to determine the Fourier transform of applied forces '’
and the structural response. To determine the transfer func-
‘tions in terms of the original coordinates x, we use equation
(3) which transforms x into g. The matrix (K] also transforms
X(w), the Fourier transform of x(t), into Q(w):

Qw) =[al X(w). (21)

Considering the Fourier transform of q.(t), obtained from (12),

‘the resulting n equations can be colledted into the one matrix
equation:

Q(w) = D(Hji(w)) [A] F(w) (22)

where D(H,(w)) is a diagonal matrix. Therefore the matrix equa-
:tion which relates forces applied to the original coordinates
and their response isg

X(w) = [A]T D(Hi(w)) [A] F(uw) (23)

‘The matrix (H(w)], defined as
[H(2)) =041 D(H () [a], (24)

is the matrix of transfer functions which can be related to
iirect measurements of the dynamic structural response. A typi-
cal element h, .(w) of [H(w)] is the Fourier transform of the
output at coo}ainate x, divided by the Fourier transform of the
input force at x.. Als®, experimental measurements at the coor-
dinates x are uséally made in terms of output accelerations{6].

Thus, Acc(w) = ~w2[H(w)] F(w). (25)

[t is this transfer function matrix, unflﬁ] which is usually
obtained in experimental modal surveys It is_important to dis-

tinguish the measured iransfer functic: =-u[H) from its theo=~
retice? counterpart -u (H) in equation (24) The matrix (H) is
obtained from experimental data and repiresents the real charac-
teristics of the structure at certain, hop:fully representatiwve,
‘points.

Each element of the transfer function matrix D(H,(w)) given by
‘equation (15) can be factored and then expanded “by partial
fractions into:

ro

i w m - 2] ‘-;.
Ho(w) = Jeg My T B

k28]

r =
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The term A is the damped natural frequency for this modal co-
:ordinate 8nd ¢ is the inversé of its damping time constant.
These two parameters are defined in terms of the i-th modal:
mass, stiffness and damping by equations (19) and (20). The
‘complex number Py = -0~ jwd, is called a pole of the transfer
function. Define :

1
Ay = ———— ¢ (27)

2jUd mi

‘The coefficient A, is called the residue at the pole Py In
‘the notation for complex poles and residues, equation™ (26)
takes the form :

t
w

Ai Ai
fy (W) = S o e (28)

. ; *
Jw = P{ Jw = Pi
_where the star denotes complex conjugation.

It is the purpose of parameter egstimation techniques in modal
analysis to define the elements my, Cy, and Ei and the matrix
(A} which best fit (H) to [H).

The value ¢; = 2 Vk; m; is called critical damping. When the '

‘modal damping ¢, is less than this critical value, @, is real
and p, is complex. When C; is greater than critical damping,
.the damped natural frequency becomes the imaginary number,j]QdL
‘Equation (28) is still valid, however, there are now two dis—
tinct real poles

PL—_':’T"J: pi:—l‘— (29)

‘with equal but opposite in sign real residues Ai

[t is also clear from equation (24) that the transfer function
13 the sum of symmetric matrices and is symmetric. '

d A*
an i®

o1 p

Hy akiakj
=] 4 (30)
Symmetry of [H] implies that h;.=h_. or that the response of
Xy to a force at x. is exactly J the same as the response of
x; to the same forfe at x,. This fact is useful in experimental
_t%ansfer function measure&ents. Incorporating the complex pole
‘and residue form of Hy given by (27) into (30) we obtain

*
A S B & itk
! jw - Pk jw - p¥ (31) .

K

n e g



o FIRST A.M.E. CONFERENCE
DYN-13]138

29-31 lMay 1984, Cairo

S

There are 2n couplex constants (pk, Ak ki 8K ) which are ad-

justed by curve fitting algorithms until the ({ransfer function
‘ ij are approximately equal to the measured hiJ

NON-PROPORTIONAL DANMPING

In order to handle general damping matrices, & 2n x 1 vector z
igs defined with its first n elements equal to x and its last n
equal to x. The n equations of motion (1) can be written in
‘terms of these new coordinates z

[R] z(t) + [s] z(c) = g(u) (32)
‘where
- N _[— \) ;: '
'Rl = {LOJ[M] EEPER S R I I R |
|[x)Cc] TINE S ) | £col

The matrices [R) and (S) are real and sy.metric and can be dia-
‘gonalized by a 2n x 2n matrix [A). It is interesting to note
that neither (R) nor [S) is positive definite, therefore, (A)

is a complex rather than real matrix. The rows of [A]) occur in
‘complex conjugate pairs and [A] can be made orthonormal. The

¢n X 1 modal coordinate vector g is related to z by the equation

g = [A]E (_33)
(5) takes the form
, LT ) o ;
CallRrRICA) q +0al 0s]lal g = [alg. (34)

Since (R) and (S) can be simultaneosly diagonalized, we obtain
the diagonal matrices D(r.) and D(s,), where the coefflolonts
and S, in this case are complex “numbers (which occur in :
mplex Eonjugate pairs). Notice that sipce the first n entries
g? % are all zero, the matrix products a. g may be simplified
n

troducing the 1 x n row vector b1 which simply consists of
:t«e last n elemeats of &), thus :
7 I
a;j g =b; f. (35)
Equation (34) has the well known solution:
E]‘.T F(w) eju)t
(tiw) = -
(jo T. + 31) (36)
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and equations (16) and (22) take the form

Hi(w) = - (37)

Q(w) = D(H;) [B] F(w). (38)

The matrix [B] has dimensions 2n x n and is obtained from (A]
by dropping its first n columns. The Fourier transform of the.
original coordinate vector z can be obtained from (38) as

z2(w) = [a1" D(Hy) [B] F(w) (29)

Due to the special form of Z, end the fact that the Fourier .
transform of x is jwX(w) where X(w) is_the transform of x, we
can deduce thgt the Tirst n rows of LAfﬁre simply jw times the
last n rows. Thus the matrix [A] has the form

[a] = [julB], [B]] . (40)

since the rows of [A] appear in complex conjugate pairs it can
be rearranged so it takes the form

= 3

I 47 = jw [BI
-jw [ B:‘:]

. }-,;and D(H;) = {D(Hi) S ] (41)
B* ] o D(ui)J '

where [B) is now an n x n matrix and [BT is its complex conjﬁ-
gate. The equation (39), which transforms the force F(®) to the
response Z(w), can thus be written in the expanded form

@jgg} _ Jw (3t -ju [B*1T D(H;j) o LB]

P ~ [
(817 [B+] o D(H¥)||TB*]

E(w) -(42)
| X

The transfer function matrix relating o force input to a dis
placement output is denoted as [H) and obtsined from (42) as

X = [H(o)] F (43)
where [(H(w) = [B]T D(Hy) [B] + [B*]T D(d;) [ B*]. (44)

A typical element of [H(w)] can be developed in the same manmpr
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as described in the case of proportional damping. The primary
‘difference is that the [B]) matrix here which corresponds to

the [A] matrix in that section has complex elements, whereas :
.[A] had only real elements. Equation (31) then takes the form

* x %
n By bribkj B bkibkj
hygle) = L * , " (45)
k=1 jJw - pk Jw - Pk
where P = _3 and B = = (46)
k Ly

EEauations (31 and 45) are considered the standard forms for the
elements of [H] used for Modal Analysis technique. :

CLOSURE

This paper develops in detail the theory and assumptions at the
base of modal analysis technique. The general form of the tran-
sfer functions assumed in model parameter estimation is given
in equations (31) and (45). The term transfer function in this
work refers to the ratio of Fourier transforms of output res-
ponse to input force. This is common terminology in modal ana-
lysis, however, the term is often reserved for the ratio of La-
place Transform. All equations required for the determination
of modes of vibration directly from vibration measurements are
given. Parameter estimation needed for adequate dynamic model+
ling and design synthesis based on this vibration data is also
included.
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