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4 	 ABSTRACT 

Modal analysis is the presentation of the dynamic properties 
:of a system in terms of the contributions due to the indepen 
- dent modes of vibration of the system. This method of analysis 
is powerful and has become very useful in the analysis of 
.experimental test data due to recent developments in real 
:time frequency analysis and digital data processing. This 
paper outlines the recent developments of the method with 
main emphasis is placed on the use of this approach in 

.analysing the dynamic performance of complex systems and in 
:solving their design problems. 

INTRODUCTION 

Modal analysis is the technique of measuring the general vib-
ration of a structure [1,2) to determine its characteristic 
modes of vibration. Each mode of vibration and its associa- 
ted natural 	frequency are unique properties of the structure. 

.The value of modal analysis lies in its ability to determine 
the relative motion of points on the structure when a reso-
nant frequency is excited. With this information, a redesign 
of the structure becomes possible such that the problem mode* 
of vibration is correctly taken into account. 

This paper describes the theoretical foundations and assump-: 
.tions underlying most of the minicomputer-based Yodal Analy-
sis systems. These systems allow the determination of modes 
of vibration directly from vibration measurements and provide 
dynamic modeling and design synthesis based on this vibration 
data. 

EQUATIONS OF ILOTION 

The number of coordinates required to describe the vibration 
of the structure as well as the number of experimental res- 

Senior Lecturer, Design and Production Engineering Dept., 
Ain Shams University, Cairo, Egypt. 

L 



FIRST A.M.E. CONFERENCE 

29-31 Nay 1924, Cairo 

. ponse measurements needed from the structure is known as the 
'number of degrees of freedom n. Considering matrix notation, 
the equations of motion for a linear system take the form 

Cm] x(t) + EC] 	+ [K] x(t) = f(t) 
	

(1) 

f(t) 	vector of input forces 

x(t) = dynamic response vector 

C M] 	= mass matrix 

tr: C] 	matrix of damping coefficients 

matrix of stiffness coefficients. 

:The vector f(t) represents the time varying force load applied 
to each degree of freedom of the structure. In an experimental 
sit4ion it is often convenient to excite the structure at 
:only one point, in one direction. The mass, stiffness and 
damping matrices[i],[KJ, and (C) are all assumed to be n x n, 
symmetrical and non-singular. The stiffness and damping mat-. 
:rites in general have off diagonal enteries which provide coup-
.lingAetween coordinates. It is a fundamental result of the 
study of linear differential equations like (1) that this con:ID-
:ling arises only from the choice of coordinates x used to des-
cribe the model. Another set of coordinates exists which, if 
used instead of x, would yield a set of n individual equations 
,each with one unknown, rather tha, the coupled set of equatidn5 
(1) (if the damping matrix has a special form). The dynamic 
response of each of these special coordinates is given by the. 
single mass, spring and damper equation of motion: 

m 	+ c (.4(r) 	k q(t) = 	 (2) 

f(t) = input force 

(t) = dynamic response 

m 	mass 

c 	= damping coefficient 

k 
	

stiffness coefficient. 

For a general symmetric damping matrix, equation (1) may still 
be decoupled with the proper choice of 2n special coordinates.  
4.3).The two cases of damping matrices are referred to as "pro,.- 
portional" or "Rayleigh" damping and "non-proportional" dam- 
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ping. The special coordinates are, of cource, the modal 
coordinates of the structure. The oscillation of each modal .  
coordinate_is completely independent of all the other coordi-; 
,nates. They may be considered separate one-degree of freedom 
'systems, each with its own natural frequency. This property 
of the modal coordinates is known as the "orthogonality" of 
mode shapes. The modal coordinates a  of a structure are iela-
ted to the original coordinates x by the equation 

q = [A] Y. 	
(3) 

:The rows of (A) dictate the amount of each element of x which 
'forms one modal coordinate, for example 

ql = allxl 	a- 
	

ainxn. 	 (4) 

:The vector all is called a mode shape vector. It is the goal 
of modal ana±ysis to determine these vectors. The matrix [A] 
is determined by the requirement that it decouple equation (1), 

:The first step is to invert equation (3), substitute for x in 
'(1), and multiply both sides by [A] to obtain: 

[A] [M] [A]-1 q + [A] [c] [A]-1 4 + [A] [K] [A]-1 q = [A] 

:This set of equations will consist of independent single deg-
'ree of freedom differential equations only if the matrix pro- 
ducts 	r ducts [A] [M] LAJ -1  , tA) (C] [Ai -1, and [A) [K) (A)-1  result 
in diagonal matrices. No single matrix (A) can diagonalize th- 
ree general matrices CM),[Ciand [K);[4]. However, two of the 
three may be diagonalized, say [m] and [K]. 

PROPORTIONAL DALPING 

.If the third matrix (C) is a linear combination of [M] and [k] 
'it too will be diagonalized by [A). 

[C] = 0. Eml + 	[ K] 	
(6) 

'ty of (.) is that for real and symmetric matrices (M) and [K), 
where a and B are arbitrary real numbers. An important proper:- 

it can be normalized such that its transpose is equal to its 
inverse, that is 

LAIT  = [ A]-1 . 
(7) 

:Therefore, an orthogonal matrix [A) exists such that equation 
(5) takes the following diagonalized form: 

D01104 + D(Ci)ci + D(Tc.i)(1 = [A]f(L). 	 (8) 
.J 
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where D(Ci, = a D(Tti) + 
	

(9) 

It is also possible to determine the response of the structure 
,frequency by frequency. A typical equation of (8) with a sinu-
soidal forcing function is written as 

miqi + ciqi + 
	F( 	 (10) 

where F(w) is the vector of Fourier transforms calculated from 
'f(t). Equation (10) has the well-known solution: 

a F( ) 
- 	- 

:This is the response of the modal coordinate q4  to a sinusoi-
dal force with frequency w. The vector F(w) 'in general has 
complex elements, and equation (11) can be written as 

q. 	= 
	atI F( ') 

   

(12) A - 

where 

( 
_ T 

Lan 
1/ 

 ai Im{FLO} 

Ri:'(w)}/ e  

sand 	tar1 

The real response of this coordinate q at t..,) is the real part 
of (12) times 2 where the factor 2 reflects the contribution: 
of F(-w). An excitation at the particular frequecy c,„) defined 
by: 	 0  

I 

( 13 ) 

:has the real response 

(4 
	- ;.o ) = 	a 	F(`J) j 	cos 	(.71(w_.  

(14) 
3  C 

Notice that this response lags behind the force by 90
0
. Also, 

we see that the magnitude of q4  increases as its damping Ei  
decreases. Undamped, this coordinate will theoretically 

L.. 
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6 make infinitely large excursions. This is known as resonance, 
'and (Jo  is the resonant frequency of qi. 

.The total response of q4  to the general excitation a4  f(t) is 
'obtained by integrating' its frequency response, equtfron (12), 
over all frequencies 

qi(t) = 
ICC a.

T 
 F(w)e

jwt  
(U. 

(15) 

 

) + j (we ) 

 

This equation can be viewedas the inverse Fourier transform of 
a product of two Fourier transforms. One factor is aT.

1  F(W) — — :and the other is 

H i (w) = 	1 	
(16) 

The convolution theorem [5] says that in this situation, equq-
:"-011 (12)iseclusitothsconvolutionofJf(t)and hl(t ) —  given by 

T cli(t)=fa.t(-0 11.(t-T) d7 
_ (17) 

where hi(t) = f H.(w)ejut 
	

(18) 

This function h4(t), the inverse transform of H.(w), is called 
the impulse response of q4. It is the total response of q. 
to a unit impulse excitatton,6(t). 

Thesolutionofequation(18) forthemdalcoordinateci.1  is given by 

h.(t) = 
t 

in ( c) 
e-at [j,„ 

e d edti 

d 	

s 

 
(19) 

(20) 

The impulse response h4(t) and its Fourier transform H.(w) are 
important functions retresenting the dynamic characteristics 
of a linear system. Equation (16)(or (12)) can be viewed as • 
a process which uses the impulse response to convert the force 
Linput_intoa response output, The function Hi(w) 	called ..J 
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(26) H. (w) = 	Wd  
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the Lransfer function of the modal coordinate q.. The functions 
•h (t) and H (0) are basic properties of a liiiea' system and can 
bid measuredi either as the response to an impulse or as the 
;ratio of the Fourier transforms of measured input and response. 
Experimental modal analysis uses the techniques of signal pro.- 
cessing to determine the Fourier transform of applied forces ' 
and the structural response. To determine the.  transfer func-
tions in terms of the original coordinates x, we use equation 
(3) which transforms x into a. The matrix (W) also transforms:  
,X(w), the Fourier transform of x(t), into 2(10): 

Q(w) = CA] X(w). 
	 (21) 

Considering the Fourier transform of q.(t), obtained from (12'), 
the resulting n equations can be colleted into the one matrix 
equation: 

Q(w) = D(Hi(w)) [A] F(w) 	 (22) 

where D(H.(w)) is a diagonal matrix. Therefore the matrix equa-
tion whici relates forces applied to the original coordinates 
and their response is 

(-LO = [Ai r  X 	D(Hi(w)) [A] F(,) 

ix (11(W)) , defined as 

[H(,))] =[A]
T 
D(Hi(JJ)) [A], 

(23)  

(24)  

is the matrix of transfer functions which can be related to 
lirect measurements of the dynamic structural response. A typi-
al element h4 .(w) of [H(W) is the Fourier transform of the 
output at coordinate x4  divided by the Fourier transform of the 
input force at x4. Als, experimental measurements at the coor-
Ainates x are usually made in terms of output accelerations[6:). 

Tiqus, Acc(w) = -w2Di(w)] F(w). (25)  

    

is this transfer function matrix, ej[g) which is usually 
obtained in experimental modal surveys It As important to dis-
tinguish the measured p-ansfer functic. -6,1-(g) from its theo-
retics' counterpart -w (H) in equation (24) The matrix (g) is 
obtained from experimental data and redLesetts the real charac-
teristics of the structure at certain, hop-frlLy representatiye, 
points. 

Each element of the transfer function matrix D(Hi(w)) given h& 
:equation (15) can be factored and then expanded by partial 
fractions into: 
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The term 6,)„, is the damped natural frequency for this modal co- 
ordinate 	nd a is the inverse of its damping time constant. 
These two parameters are defined in terms of the i-th modal: 
mass, stiffness and damping by equations (19) and (20). The 

`:complex number p4 	- ;- jwd, is called a pole of the transfer 
function. Define' 

1 
Ai - 

  

 

(2 7 ) 

 

2.jw d mi 

, :the notation for complex poles and residues, equations  (26) 
takes the form 

	

A. 	A. 

	

1 	 1  H1  .(w) - 	+ 

	

jw - 	pi 	jw - pi 
(28) 

where the star denotes complex conjugation. 

It is the purpose of parameter estimation techniques in modal 
analysis to define the elements 	 the matrix 
.(A) which best fit (H) to (H) 	i 	1 	1 

The value 6-i  = 2 15-17iri is called critical damping. When the i i 
'modal damping a, is less than this critical value, co, is real 
and pi  is complex. When -di  is greater than critical damping, 

:the damped natural frequency becomes the imaginary number,j1(4 
°Equation (28) is still valid, however, there are now two dis-
tinct real poles 

YC 

P i. 
	 (2 9 ) 

.with equal but opposite in sign real residues Ai  and A1. 

It is also clear from equation (24) that the transfer function 
:is the sum of symmetric matrices and is symmetric. 

n 
11-• = 	H j 

k=1 
k  akiakj 

(3 0 ) 

,Symmetry of [H) implies that hi4=11.1  or the the response of 
i to a force at x. is exactly t' 0  the same as the response of 
x4  to the same forge at x.. This fact is useful in experimental 
.transfer function measureients. Incorporating the complex pole 
'and residue form of H

k given by (27) into (30) we obtain 

k=1 

A
k 

a
ki

a
kj 

j' - Pk 

* 
A a a 
Ak k  

jw - P- k 

The coefficient A is called the residue at the pole p.. In 



[ R 
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- [ 0 [ [ m1 
[ m] E c] 

  

(PH = ESi = sand “c) 
C01 K 

    

(32) 
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FIRST A.M.E. CONFERENCE 

29-31 flay 1984, Cairo 

There are 2n coliplex constants (pk, Ak  aki  aki  ) which are ad- 

justed by curve fitting algorithms until the ransfer function 
hij are approximately equal to the measured f.).aij 

NON-PROPORTIONAL DAYPING 

order to handle general damping matrices, a.2n x 1 vector 
is defined with its first n elements equal to x and its last 
equal to x. The n equations of motion (1) can be written in 
:terms of these new coordinates z 

z 
n 

The matrices (R) and (3) are real and sy..metric and can be dia-
:gonalized by a 2n x 2n matrix (A). It is interesting to note 
that neither (R) nor [Si is positive definite, therefore, LA) 
19 a complex rather than real matrix. The rows of [A) occur in 
complex conjugate pairs and (A) can be made orAonormal. The 
2n x 1 modal coordinate vector a  is related to z by the equation 

q = [A]z 
(33)  

(5) takes the form 

(34)  

nce (R) and [s) can be sirnultaneosly diagonalized, we obtain 
the diagonal matrices D(i.) and D(g4 ), where the coefficients 

and §4  in this case ai4 complex 'numbers (which occur in 
ur 4T)lex Conjugate pairs). Notice that sivce the first n entries 

of a are all zero, the matrix products 	may be simplified 
by introducing the 1 x n row vector br.1 	rth simply consists of 
:the last n elements of E1  ir., thus 

g = b. f • 

Equation (34) has the well known solution: 
• 

4  
b- 	F 	e

Jwt 
 

q i(t,w 
(jw r

i
- + si- ) 

(35)  

(36)  

L. 



where 	[H(4.))]= [ B] 	[B] + L 
T 

(44) 
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6 	and equationo (16) and (22) take the form 

Hi(w) = 
	1 	

(37) + S. 
1 

Q( w ) = D(Hi) [B] F(w). 	 (38) 

The matrix [B] has dimensions 2n ,x n and is obtained from [A] 
by dropping its first n columns. The Fourier transform of the, 
original coordinate vector z can be obtained from (38) as 

Z(w) = [A] D(Hi) 	F(w) 
	

(29) 

Due to the special form of Z, and the fact that the Fourier • 
transform of x is jWX(W) where X(63) is the transform of x, we 
can deduce th4t the first n rows of [A]Tare simply jw times the 
last n rows. Thus the matrix (A) has the form 

A] = [jw [ B] , 	137] . 	 (40) 

since the rows of [Ai appear in complex conjugate pairs it can 
be rearranged so it takes the form 

[B] 	, 	3] 

[ B*] , 	B*i_ 
..;and D(Hi) D(Hi) (41) 

_ 0 	D(e1)] 

where [B) is now an n x n matrix and [14 is its complex conju-
gate. The equation (39), which transforms the force F(w) to the 
response Z(w), can thus be written in the expanded form 

        

jw [B]T 	EB*1T  

[13*]
T  

[B] 

 

D(Hi) 	0 

o 1 

 

F( ) •(42) 

        

        

        

        

The transfer function matrix relating 	force input to a dis- 
placement output is denoted as [H] and obtained from (42) as 

X = [ii(w)] F 	
(43) 

A typical element of (H(w)] can be developed in the same mantlfr 
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as described in the case of proportional damping. The primary 
difference is that the (3) matrix here which corresponds to 
the IA) matrix in that section has complex elements, whereas 
JA1 had only real elements. Equation (31) then takes the form 

* * * 
Bk  bkib Ki 

k=1 	jal - Pk 	jW 	Pk 

sk 
where pk  = 

1 
and 	Bk = (46) 

'Equations (31 and 45) are considered the standard formsfor the 
elements of [H] used for Modal Analysis technique. 

CLOSURE 

This paper develops in detail the theory and assumptions at the 
base of modal analysis technique. The general form of the tran-
sfer functions assumed in modal parameter estimation is given 
in equations (31) and (45). The term transfer function in this 
work refers to the ratio of Fourier transforms of output res-
Ponse to input force. This is common terminology in modal ana-
lysis, however, the term is often reserved for the ratio of La-
place Transform. All equations required for the determination 
of modes of vibration directly from vibration measurements are 
given. Parameter estimation needed for adequate dynamic model 
ling and design synthesis based on this vibration data is also 
included. 
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