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ABSTRACT 

In this paper, a method for the introduction of the effect of vib-, 
:ration frequency on dynamic contact stiffness of joints is presented. The 
'method is based on the measurement of the natural modes of vibration of a 
simple mechanical system containing the joint to be investigated. The res-
,ults of measurement are used, through a sensitivity technique, for the id-
entification of a joint stiffness matrix. This matrix is assumed, at firs, 
to be invariant, i.e, independent on the mode of vibration. However, the 
utilization of the identified eigensolution and the equations of sensitivity 
.corresponding to a single mode of vibration, enable one to obtain, for this: 
mode, a correction joint stiffness matrix. 

The validity of the method has been tested by numerical simulation on a case 
of a plane prestressed joint between two beams. 

INTRODUCTION 

Structural joints not only provide the major source of energy dissipation 
put are also responsible in the main for a large proportion of overall dyn-
amic deflections. 

The main problem associated with structural joints, however, is the short-
age 

 
 of informations characterizing their stiffness and damping behaviour. 

:Two main directions of investigations concerning the contact stiffness of 
joints may be distinguished : 1) Microscopic investigations, which deals 
with the mechanisms of interaction between two metalic surfaces in contact 
Under normal force [1,2;3] , and the role of surface asperities in trans-
mitting normal and tangential forces, 'Estimations of the contact stiffne-
ss of joints have been made on basis of deterministic or random topographic• 
distribution of the surface asperities[4,5 ]• 2) Macroscopic investigat-
ions, in which the contact stiffness of joints is determined experimentally 
by the measurement of the displacement at the joint interfaces produced by : 
certain applied load (6,7,8] . 

The authers (9,10,11] ,.however, have proposed a techn3,),,r= for the dynamic 
joint stiffness identification. This technique is based on the study of 
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Fig.l. System with Joint "S" 
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a mechanical system "S" consisting of two simple sub-systems "Ss1" and • "Ss2
" connected together by a joint of the type under investigation Fig.1.;  

An initial joint stiffness matrix is 
preassumed which together with the 
adjusted mathematical models of Ss1 
and Ss2  provide an initial mathemat-
ical model of the whole system. The 
difference between the identified 
eigensolutions of the system "S" and 
the calculated eigensolutions of the 
initial model is used, through a sen-
sitivity technique,for the adjustement 
of the joint stiffness matrix. 

This matrix is assumed to be invariant 
i..e, independent on the mode of vibrat- 
ion. 

In this work, however, a method for the determination of the effect of vib-
ration frequency on the joint stiffness is presented. Strating with the 
invariant joint stiffness matrix, the equations of sensitivity correspond-; 
ing to every mode of vibration are utilized to determine for this mode a 

'correction joint stiffness matrix so that the modified model of the system 
admits, for eigensolution, the identified one correspr-I-Aing to the mode in: :question. 

DATA OF THE PROBLEM 

It is assumed that an initial mathematical model of the system with joint 
is given by its mass matrix M and stiffness matrix K. M and K are real, 
symmetric, constant matrices of order NxN, positive definite and positive 
semidefinite respectively. These matrices are supposed to be obtained by 
the finite element method. They are subjected to two steps of model adjust-
(Aent : 1) Adjustement of the models of Ss' and Ss2  [121 using the identif-: 
red eigensolutions ofa monoblock system geometrically identical to the sys- 
tem with joint "S" and realized from the same material, 2) Adjustement of 
the invariant joint stiffness matrix [9,10] 

The eigenvalue problem of the autonomus conservative system associated to "S" is given by : 

(1) 
The first n eigensolutions are grouped in the 

')dt submatrix Y(Nxn) and the spectral submatrix A (nxn). Y and A satisfy t:te ntthonormality relat-ions 

t
Y M Y= E 	t

Y K Y= A 	(2) 
It is also assumed that the experiments on the real system with joint "S" 
permit the determination of its identified eigensolutions 4 and (14 r t ). 

It is taken into account that the elgenvectors yT may be part-
ially identified. (For example, laCk of informations corresponding to the .
rotation degrees of freedom (D.O.F.), or the internal D.O.P. inaccessible :to measurement). 

CK -'1/%1] y = 0 

L.. 
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MATHEMATICAL FORMULATION 

The differehce between the rth identified eigensolution yr
m 

 , 1)%rm   and the 
corresponding calculated eigensolution of the initial model yr, 'Nx. is due 
to the noncoensidence between the invariant joint stiffness matrix and 
the real one expressing the physicaltehaviour of the joint on the rth  
mode. Our problem now is to determine for every mode r a correction joint 
stiffness matrix 4/4 such that the modified mathematical model of "S", 
given by; 

K m  = K +A Ki 
r 	r 

M = M 	 (3) 

A m 
admits yr  and Ar  as eigensolution. By consequence, for the r

th 
mode of 

vibration, the equation of dynamic equilibrium of the system "S" is given 
by : 

K +Q Ki - 	ym  = O 	 (4) 

It is assumed that the precision of the initial model is reasonable such 
that the differences between identified and calculated eigensolutions are 
small to enable appropriation and ensure the quasi orthonormality proper-
ty. Based on this property the rth  identified eigenvector yit  may be exp-; 
ressed on basis of the calculated submodal matrix Y as follows t121: 

v = Y a 
'r 	'r 

Introducing the changement of basis (5) into (4) and premultiplying by tY; 

tY {K + Kr
j  - m  M} Y g = 0 	 (6) 

Taking into account the conditions of orthoncrmality (2), the relation (6) 
may be rewritten as : 

t 	j Y KYg = 	m E-Ajgr r 

Application of a Sensitivity Method 

The correction joint stiffness matrix A lg, may be expressed in terms of 
the relative modifications of the joint stiffness parameters api/pi ; 
1 4 i q , in the form : 

	

I a lc 	a Pi 	2 

K 	1-' = 	""` .1  (4- 	 P. P. 
) ( 	1) + 0 ( 	1) 4  • • • 

	

i=1 	Pi 

The matrices (4)KApi), 140_ 4:q, are calculated from the algorithm util-
ized in the discretization leading to the initial model. 

Considering the 1
st 

order terms in (8) the L.H.S. of (7) may be rewritten; 

	

q 	• A Pi  t
Y Kr

j Y gr 
	

,nr = 	( 	) 
I  i=1 	

p,  

: where 

L.. 

pir.(mx1) = pi  ty(4)K  ) Y g  
1 i q 	(10) 

faP. 

 

(5) 

(7)  

(8)  

(9)  
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r  

Substituting from (9) into (7) a system of linear equations in ( pi/pi) 
• as unknowns, is obtained ; 

r  k 	
i, 

= 	E 	gr r  i=1 	p.  

Equations (11) may be grouped in the following matrix form : 

S Z = b 
 r r 
t 	P •1 	AP q  

	

I.  A 1p  _a 	

A P 
Where ; Z

r
(qxl) = 	

1 
  is a vector of the P. , ... P 

	

i 	a JJ 

dimensionless joint stiffness parameters modifications; 

b
r(mxl) = -1:Xr: E - Ai gr is a vector characterizing the modif-: 

ications of the calculated eigensolutions so that the 
mathematical model admits ym  and ;km  as eigensolution. r 

mi S
r( mxq) = IN ,...,i,r,..., Kiis the sensitivity matrix which 

relates the modifications of the joint stiffness param-
eters to the modifications of the calculated eigensol-' 
utions. 

The matrix equation (12) represents a system of m linear equations in q 
unknowns. This system is assumed to be overdetermined, i.e; m>q. A 
solution which minimizes the squre of the norm of the weighted residual 

r vector, ilwr  E r il ,(where E r  = by. 	S,-Zr) is given by 110i 

-1 

	

Z = [
t
S W2 
	t 
S 	S W

2 
b 	 (13) r  

	

r r 	 r r 

Using equation (8) the solution vector Zr.is used for the determination of 
the correction joint stiffness matrix A K 	to the rth mode 

vibration. 

For the exploitation of the prescribed method it is necessary to determine 
the vectors gr  (14r t ). From equation (5), using the pseudoinverse 

- rio] , gr  may be written in the forms : 
When yr1  is totally identified ; 

g 	tty y  y1 t
Y y 	 (14) 

m  When yr  is partially identified ; 

tv 	-1 t...v A,m g
r  = t Y Y 3 	Y yr 

where CA,) indicates that the elements corresponding to the nonidentified 
D.O.F. of 1/11.1  are replaced by zeros. 

The precision of the representation of yr  on the calculated sub-basis Y 
increases with the number n of its vectors. However for a given value of 
n, the precision of calculation is not the same for the different compon-
ents of gr. Taking as notation 

(12) 

(15) 

L.. 
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g lr 	rr (r+l)r' gnr = 	f •••, g ,g 

the precision of g components decreases as the component is more and 
more far from g 

rr
.r  Therefore it is recommended to apply the following 

procedure : 

1) to calculate gr  using a sub-basis Y having as higher number of vectors 
n as possible. 

2) to utilize only m equations of sensitivity (12) (m .(n) corresponding 
to the components of gr  which are not very far from grr• 

3) to use a weighting matrix Wr  in the solution of the equations of sensi-
tivity (13) which gives more weight for the equations corresponding to 
the components of gr  very near to 

The weighting matrix Wr  is a diagonal matrix whose elements are given by 
one of the following two proposed forms : 

(WSS ) r = 1/ ti s - r + 1 t 	or 	(16-a) 

(Wss )r 
 = 1/ills - r + 111 	(16-b) 

where l‘ 	14i7r4; t s4m ,  

APPLICATION 

The presented method has been applied on a case of plane pre-stressed joint 
between two beams of uniform cross-sections 
free transversal vibration of this system 
is considered. The stiffness matrix of 
the joint is given by (17) 
under the assumption that there is no el-
astic coupling between the transversal 
and the rotational motion of the joint 
interfaces. 

as shown in Fig.2. Plane free- 

- k
1 

0 -k
1 
 O 

Ki = 0 	k
2 

0 	-k
2 

(17) • 

-k
1 
0 k1  0 

0 -k
2 
0 k

2 
— 	— 

k
1 

and k
2 
 are the transversal and 

respectively. They represent, in 
to be modified. 

the rotational stiffness of the joint 
this application, the joint parameters 

gra"•  

Validation of the Method by Numerical Simulation 

The method has been tested by numerical simulation on several case studies 
two of them are presented hereafter. The eigensolutions yT (38x1) and /Wi, 

r44, simulating the results of identification are calculated forma sim-
ulated identified model. For this model the joint parameters kTr, k2r  
corresponding to the rth mode are obtained by introducing a modification 
tiktrand tIq'r  on the joint parameter k1 and k cor-esponding to the in-
variant joint stiffness matrix of the initial model. The proposed method 
is then applied to determine the corrections A klr  and Ak2r  of the joint 
parameters on the rth  mode. The validity of th? method is evaluated by 
comparing the introduced modificationsAkt ,A141.. with the obtained corr-
ectionsiikir  , Ak2r  for every one of the Jt four deformable modes. 



C) Detailes of the prestressed Joint. 

1 

in 
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To reduce the computation costs of solving the eigenvalue problem corres-
ponding to the simulated identified model, the iritroduced modifications 

4  kir/ Alc. r  are chosen to be the same over all the four tested modes of; 
vibration, 141.44 . This does not restrict the validity of the method 
since the obtained corrections A kir  , Ak2r  are calculate separately 
for every mode. 

a) General Assembly: 

Fig. 2. Joint Assembly (Plane prestressed Joint between 

two Beams). 

L.. 
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.Results and Discussion 

The results of numerical simulation on two case studies are given in tabled 
1 and 2. They represent two different levels of joint stiffness parameters. 

':In both cases the system with joint fig.2 is devided into 17 beam elements 
and has 38 D.O.F. The errors of measurement are simulated by introducing ; 
random errors of maximum value + 4 % on the simulated elements of ynrl. 
The other conditions of simulation are given directly in tables 1 and 2 
corresponding to every case and are denoted as follows : 

n : number of vectors of the calculated sub-basis Y. 
• m : number of retained equations of sensitivity. 
NF: number of nonidentified degrees of freedom 
W : form of the weighting matrix 

W = 1 equal weights of all sensitivity equations 
W = 2 weighting matrix constructed by equation (16-a) 
W = 3 weighting matrix constructed by equation (16-b) 

The results of numerical simulation show that the proposed method enables 
the correction of the joint stiffness parameter for every one of the first 
four deformable modes of vibration. The absence of informations correspon7 
ding to 23 nonidentified D.O.F. (out of 38), do not affect much the quality 
of corrections. This is justified by the fact that representation of the 
identified eigensolution on basis of the calculated modal sub-matrix is 
:quite precise. 

The results show also that a more precise correction of the joint parameters 
may be achieved by : 

'1- The increase of the number n of vectors of the calculated modal sub-
matrix; 

2- The proper choice of the equations of sensitivity involved; 
:3- The solution of the weighted sensitivity equations using one of the 

proposed weighting formulee. 

CONCLUSION 

The proposed method enables the utilization of identified eigensolutions 
for the determination of the effect of the vibration frequency on the joint: 
:stiffness parameters. The results of numerical simulation show that the 
precision of the joint stiffness corrections is quite satisfactory. 
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NOMENCLATURE 

Unit matrix 
Stiffness matrix,. 
Number of identified eigensolutions 

M 
	

Mass matrix 
m 	Number of retained equations of sensitivity 
N 
	

Number of degrees of freedom of the model 
n 	Number of calculated eigensolutions 

Weighting matrix 
y 
	

Calculatedmodal sub-matrix 

r 
r th eigenvector 

;kr 
r th eigenvalue 

Upper index m : quantities belonging to the identified model. 
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