

MILITARY TECHNICAL COLLEGE
CAIRO - EGYPT
EFFECT OF VIBRATION FREQUENCY ON DYNAMIC
\vdots
CONTACT STIFFNESS OF JOINTS
A.S.ABDEL-MOHSEN* , A.S. BASSIOUNI**

ABSTRACT

In this paper, a method for the introduction of the effect of vib.ration frequency on dynamic contact stiffness of joints is presented. The: "method is based on the measurement of the natural modes of vibration of a simple mechanical system containing the joint to be investigated. The results of measurement are used, through a sensitivity technique, for the id:entification of a joint stiffness matrix. This matrix is assumed, at first., to be invariant, i.e, independent on the mode of vibration. However, the utilization of the identified eigensolution and the equations of sensitivity .corresponding to a single mode of vibration, enable one to obtain, for this. mode, a correction joint stiffness matrix.

The validity of the method has been tested by numerical simulation on a case of a plane prestressed joint between two beams.

INTRODUCTION

Structural joints not only provide the major source of energy dissipation: but are also responsible in the main for a large proportion of overall dynamic deflections.

The main problem associated with structural joints, however, is the short- : age of informations characterizing their stiffness and damping behaviour.

Two main directions of investigations concerning the contact stiffness of joints may be distinguished : l) Microscopic investigations, which deals with the mechanisms of interaction between two metalic surfaces in contact under normal force $[1,2,3]$, and the role of surface asperities in transmitting normal and tangential forces, Estimations of the contact stiffness of joints have been made on basis of deterministic or random topographic. distribution of the surface asperities[4,5]. 2) Macroscopic investigations, in which the contact stiffness of joints is determined experimentally by the measurement of the displacement at the joint interfaces produced by fertain applied load $[6,7,8]$.
The authers [9,10,11], however, have proposed a technique for the dynamic joint stiffness identification. This technique is based on the study of
*Lt. Col. Dr. , ** Col. Dr.
Department of Mechanics and Elasticity, M.T.C., Cairo, Egypt.

: a mechanical system "S" consisting of two simple sub-systems "Ss ${ }^{1}{ }^{1}$ " and "Ss ${ }^{2}$ " connected together by a joint of the type under investigation Fig.1.: An initial joint stiffness matrix is
: preassumed which together with the adjusted mathematical models of Ss^{1} and Ss^{2} provide an initial mathemat: ical model of the whole system. The difference between the identified eigensolutions of the system "S" and
the calculated eigensolutions of the initial model is used, through a sensitivity technique, for the adjustement of the joint stiffness matrix.

This matrix is assumed to be invariant i.e, independent on the mode of vibration.

Fig. 1. System with Joint "S"
In this work, however, a method for the determination of the effect of vibration frequency on the joint stiffness is presented. Strating with the invariant joint stiffness matrix, the equations of sensitivity corresponding to every mode of vibration are utilized to determine for this mode a correction joint stiffness matrix so that the modified model of the system admits, for eigensolution, the identified one corresponding to the mode in: question.

DATA OF THE PROBLEM

It is assumed that an initial mathematical model of the system with joint is given by its mass matrix M and stiffness matrix K. M and K are real, symmetric, constant matrices of order NxN, positive definite and positive semidefinite respectively. These matrices are supposed to be obtained by the finite element method. They are subjected to two steps of model adjustment : 1) Adjustement of the models of Ss^{1} and Ss^{2} [12] using the identified eigensolutions ofa monoblock system geometrically identical to the system with joint "S" and realized from the same material, 2) Adjustement of the invariant joint stiffness matrix [9,10].
:The eigenvalue problem of the autonomus conservative system associated to

$$
\begin{equation*}
[K-\lambda M] y=0 \tag{1}
\end{equation*}
$$

The first n eigensolutions are grouped in the modal submatrix $Y(N \times n)$ and the spectral submatrix $\wedge(n \times n)$. Y and \wedge satisfy the orthonormality relat-
ions

$$
t_{Y M Y}=E \quad ; \quad t_{Y K Y}=\wedge
$$

It is also assumed that the experiments on the real system with joint "S" permit the determination of its identified eigensolutions Y_{r}^{m} and $\boldsymbol{\lambda}_{r}^{m}$ ially identified. (For example, lack of informations ectors ${ }_{Y} Y_{Y}^{m}$ may be partrotation degrees of freedom (D.O.F.) of informations corresponding to the :to measurement).
$\dot{\vdots}$.

DYN-11	113

MATHEMATICAL FORMULATION

The difference between the $r^{\text {th }}$ identified eigensolution $y_{r}^{m}, \lambda_{r}^{m}$ and the : corresponding calculated eigensolution of the initial model Y_{r}, λ_{r} is due to the noncoensidence between the invariant joint stiffness matrix and the real one expressing the physicalbehaviour of the joint on the $r^{\text {th }}$ mode. Our problem now is to determine for every mode r a correction joint
\vdots stiffness matrix ΔK_{T}^{\top} such that the modified mathematical model of "S", given by;

$$
\begin{equation*}
K \underset{r}{m}=K+\Delta \underset{r}{K_{j}^{j}} \quad, \quad M^{m}=M \tag{3}
\end{equation*}
$$

admits y_{r}^{m} and λ_{r}^{m} as eigensolution. By consequence, for the $r^{\text {th }}$ mode of vibration, the equation of dynamic equilibrium of the system "S" is given by :

$$
\begin{equation*}
\left\{K+\Delta K_{r}^{j}-\lambda_{r}^{m} M\right\} y_{r}^{m}=0 \tag{4}
\end{equation*}
$$

It is assumed that the precision of the initial model is reasonable such : : that the differences between identified and calculated eigensolutions are small to enable appropriation and ensure the quasi orthonormality property. Based on this property the $r^{\text {th }}$ identified eigenvector y_{Y}^{m} may be exp-: ressed on basis of the calculated submodal matrix Y as follows [12]:

$$
\begin{equation*}
Y_{r}^{m}=Y g_{r} \tag{5}
\end{equation*}
$$

! Introducing the changement of basis (5) into (4) and premultiplying by ${ }^{t}$;

$$
\begin{equation*}
t_{Y}\left\{K+K_{r}^{j}-\lambda_{r}^{m} M\right\} Y g_{r}=0 \tag{6}
\end{equation*}
$$

Taking into account the conditions of orthonormality (2), the relation (6). ; may be rewritten as :

$$
\begin{equation*}
t_{Y} \quad K_{r}^{j} Y g_{r}=\left\{\lambda_{r}^{m} E-\Lambda\right\} g_{r} \tag{7}
\end{equation*}
$$

Application of a Sensitivity Method
The correction joint stiffness matrix ΔK_{Y}^{j} may be expressed in terms of the relative modifications of the joint stiffness parameters $\Delta p_{i} / p_{i}$; $1 \leqslant i \leqslant q$, in the form :

$$
\begin{equation*}
\Delta K_{r}^{j}=\sum_{i=1}^{q} p_{i}\left(\frac{\partial K}{\partial p_{i}}\right)\left(\frac{\Delta p_{i}}{p_{i}}\right)+0\left(\frac{\Delta p_{i}}{p_{i}}\right)^{2}+\ldots \tag{8}
\end{equation*}
$$

The matrices $\left(\partial \mathrm{K} / \partial \mathrm{p}_{\mathrm{i}}\right)$, $1 \leqslant \mathrm{i} \leqslant \mathrm{q}$, are calculated from the algorithm utilized in the discretization leading to the initial model.
\vdots Considering the $1^{\text {st }}$ order terms in (8) the L.H.S. of (7) may be rewritten;

$$
\begin{equation*}
\vdots \quad t_{Y \Delta K_{r}}^{j} Y g_{r}=\sum_{i=1}^{q} \beta_{r}^{i}\left(\frac{\Delta p_{i}}{p_{i}}\right) \tag{9}
\end{equation*}
$$

: where :
i..

$$
\beta_{r}^{i}(m \times l)=p_{i}{ }^{t} y\left(\frac{\partial K}{\partial p_{i}}\right) Y g_{r}
$$

DYN-11	114

Substituting from (9) into (7) a system of linear equations in ($\Delta p_{i} / p_{i}$) as unknowns, is obtained ;

$$
\begin{equation*}
\sum_{i=1}^{q} \beta_{r}^{i}\left(\frac{\Delta p_{i}}{p_{i}}=\left\{\lambda_{r}^{m} E-\Lambda\right\} g_{r}\right. \tag{11}
\end{equation*}
$$

Equations (11) may be grouped in the following matrix form :

$$
\begin{equation*}
S_{x} z_{x}=b_{x} \tag{12}
\end{equation*}
$$

Where $: z_{r}(q \times 1)=t\left\{\frac{\Delta p_{1}}{p_{1}} \ldots . . \frac{\Delta p_{i}}{p_{i}}, \ldots \frac{\Delta p_{q}}{p_{q}}\right\}$ is a vector of the dimensionless joint stiffness parameters modifications; $b_{r}(\operatorname{mxl})=\left\{\lambda_{r}^{m} E-\Lambda\right\} g_{r}$ is a vector characterizing the modifications of the calculated eigensolutions so that the mathematical model admits Y_{r}^{m} and λ_{r}^{m} as eigensolution: $S_{r}(m x q)=\left\{\beta_{r}^{l} \ldots \beta_{r}^{i} \ldots, \beta_{r}^{q}\right\}$ is the sensitivity matrix which relates the modifications of the joint stiffness parameters to the modifications of the calculated eigensolutions.

The matrix equation (12) represents a system of m linear equations in q unknowns. This system is assumed to be overdetermined, i.e; m>q. A solution which minimizes the squre of the norm of the weighted residual vector, $\left\|w_{r} \varepsilon_{x}\right\|$, (where $\left.\varepsilon_{r}=b_{r}-S_{r} z_{r}\right)$ is given by $[10]$.

$$
\begin{equation*}
z_{r}=\left\{{ }^{t_{S}} W_{r} W_{r}^{2}\right\}^{-1} t_{S_{r}} W_{r}^{2} b_{r} \tag{13}
\end{equation*}
$$

Using equation (8) the solution vector $Z_{r_{j}}$ is used for the determination of the correction joint stiffness matrix $\Delta \mathrm{K}_{\Upsilon}$ corresponding to the $r^{\text {th }}$ mode : of vibration.

For the exploitation of the prescribed method it is necessary to determine : the vectors $g_{r}(1 \leqslant r \leqslant l)$. From equation (5), using the pseudoinverse [10], g_{x} may be written in the forms:

* When y_{r}^{m} is totally identified ;

$$
\begin{equation*}
g_{Y}=\left\{t_{Y Y}\right\}^{-1 t_{Y}} Y_{r}^{m} \tag{14}
\end{equation*}
$$

* When y_{r}^{m} is partially identified ;

$$
g_{r}=\left\{\begin{array}{l}
t \tilde{Y} \tilde{Y}\}^{-1} \mathrm{t}_{\tilde{Y}} \tilde{Y}_{r}^{m} . \tag{15}
\end{array}\right.
$$

where [~] indicates that the elements corresponding to the nonidentified D.O.F. of y_{r}^{m} are replaced by zeros.
© The precision of the representation of y_{r}^{m} on the calculated sub-basis Y increases with the number n of its vectors. However for a given value of
: n, the precision of calculation is not the same for the different compon- : ents of g_{r}. Taking as notation

FIRST A.M.E. CONFERENCE
29-31 May 1984, Cairo

$$
g_{r}={ }^{t}\left\{g_{1 r}, \ldots, g_{r r}, g_{(r+1) r}, \ldots g_{n r}\right\}
$$

the precision of g_{r} components decreases as the component is more and
: more far from $g_{r x}{ }^{r}$. Therefore it, is recommended to apply the following procedure :

1) to calculate g_{r} using a sub-basis Y having as higher number of vectors n as possible. ${ }^{r}$
2) to utilize only m equations of sensitivity (12) ($m<n$) corresponding to the components of g_{r} which are not very far from $g_{r r}$.
3) to use a weighting matrix W_{r} in the solution of the equations of sensitivity (13) which gives more weight for the equations corresponding to :
: the components of g_{x} very near to $g_{r x}$.
The weighting matrix W_{r} is a diagonal matrix whose elements are given by one of the following two proposed forms :
$\vdots \quad\left(w_{S S}\right)_{r}=1 /\{\sqrt{|s-r+1|}\} \quad$ (16-b)
where $1 \leqslant s \leqslant m, 1 \leqslant r \leqslant \ell$.

APPLICATION

'The presented method has been applied on a case of plane pre-stressed joint between two beams of uniform cross-sections as shown in Fig.2. Plane free: free transversal vibration of this system is considered. The stiffness matrix of the joint is given by (17) under the assumption that there is no elastic coupling between the transversal and the rotational motion of the joint interfaces.

$$
K^{j}=\left[\begin{array}{cccc}
\mathrm{k}_{1} & 0 & -\mathrm{k}_{1} & 0 \tag{17}\\
0 & \mathrm{k}_{2} & 0 & -\mathrm{k}_{2} \\
-\mathrm{k}_{1} & 0 & \mathrm{k}_{1} & 0 \\
0 & -\mathrm{k}_{2} & 0 & \mathrm{k}_{2}
\end{array}\right]
$$

k_{1} and k_{2} are the transversal and the rotational stiffness of the joint respectively. They represent, in this application, the joint parameters \vdots to be modified.

Validation of the Method by Numerical Simulation
The method has been tested by numerical simulation on several case studies two of them are presented hereafter. The eigensolutions Y_{r}^{m} (38xl) and λ_{r}^{m} $l \leqslant r \leqslant 4$, simulating the results of identification are calculated for a simulated identified model. For this model the joint parameters $k_{M_{r}}^{m} k_{2 r}^{m}$ corresponding to the rth mode are obtained by introducing a modification $\Delta k_{1 r}^{i}$ and $\Delta k_{2 r}^{i}$ on the joint parameter k_{1} and k_{2} corresponding to the invariant joint stiffness matrix of the initial model. The proposed method is then applied to determine the corrections $\Delta k_{1 r}$ and $\Delta k_{2 r}$ of the joint parameters on the $r^{\text {th }}$ mode. The validity of the method is evaluated by
comparing the introduced modifications $\Delta k_{l}^{1} r_{t}, \Delta k_{2 r}^{1}$ with the obtained corrections $\Delta k_{1 r}, \Delta k_{2 r}$ for every one of the 1 st four deformable modes.

To reduce the computation costs of solving the eigenvalue problem corresponding to the simulated identified model, the introduced modifications $\Delta k_{1 x}^{1} \Delta k_{2 x}^{i}$ are chosen to be the same over all the four tested modes of vibration, $1 \leqslant r \leqslant 4$. This does not restrict the validity of the method since the obtained corrections $\Delta \mathrm{k}_{1 r}, \Delta \mathrm{k}_{2 r}$ are calculate separately for every mode.
!

Fig. 2. Joint Assembly (Plane prestressed Joint between two Beams).
i.

FIRST A.M.E. CONFERENCE
29-31 May 1984, Cairo

Results and Discussion

The results of numerical simulation on two case studies are given in tables 1 and 2. They represent two different levels of joint stiffness parameters.
? In both cases the system with joint fig. 2 is devided into 17 beam elements and has 38 D.O.F. The errors of measurement are simulated by introducing : random errors of maximum value $\pm 4 \%$ on the simulated elements of Y_{r}^{m}.
:The other conditions of simulation are given directly in tables 1 and 2 corresponding to every case and are denoted as follows :

```
; n : number of vectors of the calculated sub-basis Y.
    m : number of retained equations of sensitivity.
    NF: number of nonidentified degrees of freedom
W : form of the weighting matrix
    W = 1 equal weights of all sensitivity equations
    W = 2 weighting matrix constructed by equation (16-a)
    W = 3 weighting matrix constructed by equation (16-b)
```

The results of numerical simulation show that the proposed method enables
the correction of the joint stiffness parameter for every one of the first four deformable modes of vibration. The absence of informations corresponding to 23 nonidentified D.O.F. (out of 38), do not affect much the quality of corrections. This is justified by the fact that representation of the identified eigensolution on basis of the calculated modal sub-matrix is quite precise.

The results show also that a more precise correction of the joint parameters may be achieved by :

1- The increase of the number n of vectors of the calculated modal submatrix;
2- The proper choice of the equations of sensitivity involved;
:3- The solution of the weighted sensitivity equations using one of the proposed weighting formulee.

CONCLUSION

The proposed method enables the utilization of identified eigensolutions for the determination of the effect of the vibration frequency on the joint istiffness parameters. The results of numerical simulation show that the precision of the joint stiffness corrections is quite satisfactory.

REFERENCES

1. O'Connor and Johnson, "The Role of surface Asperities in transmitting Tangential Forces between Metals", Wear, 6, 118-139 (1963).
2. Bowder and Tabor, "The friction and lubrication of solids", Oxford University Press.
3. Timoschenko and Goodier, "Theory of Elasticity - Pzoblem of Hertz", Mc-Graw-Hill Book Co. New-York (195l)
:4. Thomas and Sayles, "Stiffness of Machine Tool Joints : A Random Process Approach" Journal of Engineering for Industry, Feb. 1977.
:5. Chikate and Basu, "Contact Stiffness of Machine Tool Joints", Tribology : International, Feb. 1975.
i6.. Masuko, Ito and Koizumi, ... Horizontal Stiffness and Micro-slip on a Boltej

```
|
    Joint Suojected to Repeated Tangential Static Loads", Bullatin of JSME,
        Vol. 17. No. 113 November 1974.
    7. Connolly and Thornley, "Determining the Normal Stiffness of Joint :
:Faces" Journal of Engineering for Industry, Feb. 1968
    8. Andrew, Cockburn and Waring, "Metal Surfaces in Contact under Normal
        forces : Some Dynamic Stiffness and Damping characteristics" "Proc.
! Inst. N. Mech. Engrs. 1967-1968, Vol. 182.
    9. A.S. ABD EL MOHSEN and LALLEMENT, "Dynamic Joint Stiffness Identifica-:
        tion ". Proceeding of the l3 th International conference on Machine
        Dynamics, Jadwisin (warsaw), Poland; 6-10 April }198
: lO. R.Fillod, G.Lallement and A. Abd El-Mohsen" Identification Lineaire !
        et Non Lineaire de Structures Mecaniques : Applications Aux Joints
        Entre Sous-structures" Contrat No 81s0207 - MEC / P 2422, Ministere de.
        la Recherche et de la Technologie, Marseille, Jan. 1982.
    11. A.S. Abd El-Mohsen and M.M. EL-Maddah, "Identification of Dynamic Joint
        Stiffness Using Modal Data", 2nd PEDAC"83 International Conference, :
! Alexandria Univ. 27-29 December 1983. Egypt.
    12. Bugeat, Fillod, Lallement and Piranda, "Adjustement of a Conservative
! Non Gyroscopic Mathematical Model from Measurement", The Shock and
    Vibration Bulletin, Bullatin 48, part 4, 71-81 (1978).
            NOMENCLATURE
    E Unit matrix
K Stiffness matrix
    \ell Number of identified eigensolutions
    M Mass matrix
:m Number of retained equations of sensitivity
        Number of degrees of freedom of the model
    n Number of calculated eigensolutions
    W Weighting matrix
    Y Calculatedmodal sub-matrix
    Yr r th eigenvector
    \lambdar r th eigenvalue
```

 Upper index \(m\) : quantities belonging to the identified model.
 !
"
!
\vdots
\vdots

