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ABSTRACT

This paper tests a new procedure to identify the eigenvalue problem matrix
- "A", and thus the system's modal parameters, by utilizing the frequency
response of the system in state-space. A sample identification test is
performed with added random error in order to simulate real measuring con-
- ditions. Results indicate that it is slightly difficult to identify the
» "A" matrix of an undamped system. The error in that system must be very
small for this type of system to be identified. However, when the identi-
fication is repeated several times and then averaged, the identification
. becomes more¢ accurate,

INTRODUCTION

. Modal analysis can be defined as the theoretical or experimental analysis -
.of the structure's dynamic characteristics of a mechanical system in terms
'O? its modal parameters; that is, finding the eigenvalues and eigenvectors
of the equations of motion which define the mechanical system. The develo-
_Pment of modal testing techniques, which took place mainly after World War-
1T, was made principally in the aircraft and space vehicle fields (Budd
[L]). Before 1960, frequency response determination for modal analysis
was limited to a discrete sine testing method, and mode shape was deter-
mined by a simple sine dwell method. Sand patterns and other similar test-
:iug techniques were also used to determine nodal (zero amplitude) patterns,
-puring the early 1960's, the most important development was the tracking
filter that allowed the use of the mechanical impedance measuring analyzer;
:muscly known as the transfer function analyzer. The transfer function
.agalyzer measured frequency response by using a sinusoidal excitation
signal to excite the mechanical system. This process made it possible to :
. 8et frequency response plots, and from the poles natural frequencies, and
damping could be estimated, Another improvement was the development of a
coquad meter which allowed the real and imaginary components of the fre-
quency response to be measured directly. Instead of using the total amp- .
.litude for the mode shape values, the quadrature response could be used to
separate closely coupled modes.
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“xperimental modal analysis became divided into two fields: (1) the multi-
oput sine dwell (MISD), and (2) the single input frequency response (SIFRQ)

ne multi-input sine dwell test (MISD) was the most popular modal testing
method.,  Several classical papers were published which discuss the calcul-
- ation of force ratios among shakers, like Kennedy [2], Lewis [3], Asher
| and Bishop [5] . In this procedure, however only one frequency could .
measured at a time, so it was required to have a large number of response
insducers in parallel to minimize the test time,

the single - input frequency response method (SIFRQ) it was necessary
ieasure a large number of frequency responses. This was a very slow
‘288 using existing unalog equipment at that time. But, in the late
“ies minicomputer systems and the implementation of the fast Fourier
sform algorthm in these computers made it possible to develop a Fourer
ysis system which could be used to measure frequency response in a .
L fraction of the time required with the analog equipment. Cooley and
" Tukey [6] developed the Fast Fourier Transform procedure which made all
that possible and did some studies on complex Fourier series machine cal-;
culations. Many new excitation and testing methods were developed: impact

g, random, pseudo-random, etc., as a result of these new Fourier
[ques,

Experimentally, the prosent technology is a continuation of the technolo-
gies developed during the sixties but much more refined. With the intro- .
luction of low cost winfcomputers,. and the development of software programs

modal testing, for example General Radio Time/Data Division [7] and
~tt-Packard [8} » more tests are done using digital dequipment. The )
0 conducting the modal test using a digital signal processing techni-
que 1is the measurement of the frequency response function between the imput
“ces and the responses at different locations of the structure. Modal
irameters for defining the dynamic characteristics of the structure are
en extracted from these measured functions. Substantial literature has
© with this approach, for example, Richardson and Potter [9]; Ramsey
,11] 3 Klosterman and Z imme rman [12] s Brown and others [13] . Single :
tation frequency response methods have probably been developed nearly
heir limit Potter [14] . The multi-shaker sine dwell method, as in
and Su [15], is also reaching its practical limits. Multi-input
ds are currently being developed which are combining the best features
th methods Allenang and others [16]. Also new non-traditional methods
oeen developed such as Ibrahim time domain (Ibrahim and others [17,
» autoregressive moving average (Friedman [19] ), direct parameters
ification (Maattaneu [20] ), and poly reference (Vold and Rocklin

1

: theoretical area, the method presented here and other advances 1in

#rea will, hopefully, help in making analysis more accurate, easier
crform and simpler to modify,

THEORETICAL DEVELOPMLENT

i absence of gyroscopic, damping, circulatory forces, the equation of’
on of conservative system becomes

q(t) + Kq(t) = Q ' (1)
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We can write this equation as [22] :
M*x(t) + K#x(t) = U (2)

: Where x(t) is the 2n-dimensional state vector:

2o = [3T 1 aom’]" (3)
: and
M| oo 0! K
O s e ,  K¥ = | —d-- (4)
011 & A

2n x 2n are real matrices and where U is a forcing vector,
U = — (5)

The final formulation in state space representation is then given by:
x = AX - MKTQ (6)
! where

B o ! RV
A = =Mt TK¥ = — -f.-— st e ( 7 )

I ! o

Assuming that M* is not singular, A is an arbitrary real matrix. Because
A is real, if the eigenvalues A are complex, then they must occur in pairs
‘ of complex conjugates and so must the eigenvectors X.

The procedure presented here is based on the frequency-response teclnique :

: using the state-space vector method, (Takahashi, Rabins and Auslander [23]) .
The derivative operator d/dt in equ. (6) is replaced by jw to deal with
sinusoidal steady-state (or frequency response), where y (rad/sec) is the

: angular frequency of the sinusoidal input and j =/ =1. Finally, the fol-~
lowing form for the ith state yariable in sinusoidal steady-state is
obtained:

xi(w) = o; sin wt + B, cos wt (8)
P with
4y = Ai wos §;, By Ai sin vy (9)

where A, is the amplitude and by is the phase of the ith state space
. variable,
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From equation (8), we get:

xw) = [3,8] [Si“ “’tJ (10)
cos wt
where
It Bl
g = : , B =]} (11)
%n Bon

The time derivative for =x(w) is given by:

w cos Wt sin wt] (12)

%? x (w) = [&,EJ[ P wt] = [ -wf>wa ] [ cos it

Finally, the values for ¢ and g are found to be (Takahashi, Rabins and
Auslandcr [ 23 ])y:

= W2 + a7 (B + b (13)

QI

=1 _ _
= (w2F +42)  (-Ab, - b

P
I
~

™I

The amplitude is given by:

= 2 + 62 9 i = l, 2, see e 2n (‘1";)

lxil oy

The phase angle is obtained from:
N .
-1 %

1 (16)
Bi

¢ = tan

In frequency domain and for non-homogéneous equations, we start the pro-

cedure of identifying the eigenvalue problem matrix with equation (7)
to (14). That process would describe reationships for sinusoidal steady-
state.

Equations (13) and (14) were derived by generalizing a vector lnput,
assuming:
- _ - ~ - sin wt o
u(ew) = [bl, bzl Lcds o (17)

where b, and Eé are prescribed magnitudes with each as a 2n dimensional
vector.

Substituting equations (10), (12) and (17) into equation (7), we find
after some manipulation that:
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-wB = A + El (18)
wor = AB + 52 (19)

Metwalli [24] shows that by measuring at 2n the w,;, we can get %, and
B for any W s then arranging the different vectors in equation (19) to
‘ obtain:

A g e 5 11 = = 2 oz oz 41
A= Iy mhy 1 ug% T By gl 199585y 0] [By By eer By, ] (20)

{ Also from equation (18), one can get [24]

L N e T o = w ]
A= Loy By by wpBym by ol fugaBon By pp] [ ape 91T ()

{ The following step is to add a random error to the response so that to
simulate real measuring conditions. Each of the ith colummns of the first
RH matrix in equation (19) has been changed to: :

ith column = (wo; - b2,i - b2,i) [1 + ZR.E.] (22)

where R.E. is the percentage of random error added. The random function

. used in the computer program causes an internal pseudorandom number gene- :
" rator to output a random number from O to 1, The probability distribu-
tion of these random numbers is uniform, which has been used as such for

. simplicity. Modal parameters are then obtained as the eigenvalues and

‘ eigenvectors of A,

- ‘SAMPLE TEST

A number of Cam follower systems that have been used for automotive and
aircraft piston engines have a complex follower system involving two levers
. for motion amplification. In this example, we will consider a double

lever Cam mechaniem with a four degree of freedom dynamic system model, A
study about modeling this system has been done by Teser and Matthew [25]

: and the equations of motion and detailed modeling procedures are also
explained by Barkan [26] . The details of the double lever Cam follower
system and system model are shown in Figure 1. The differential equations
. of motion of this system are written in terms of displacement variables q.,
lumped masses m,, and linear spring stiffness K,. Damping coefficients
are neglected by Tesar and Matthew [25] for simpiicity.

In a matrix form the equation of motion is

my 0 O qq Rl+k2 —k2 0 0 4 kly
0 m,0 0| |q -k, k,+k, O 0 q 0
2 =
0 0°m, 0| 2| * 0% 7 ko, -k, q- o | (23
0 0 0 m 0 : 0 o0 A4kt ]| 0
L 4] |4 4 54| e
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UPPER Kg 11 X10% 1b/in
LEVEL g ,
T HERETAINING Zlam, s 4 |
F SPRING Ib-g?/in L,
> »
% $Kg  31x10% Ibsin
<
m .95 m |X3
PUSHROD VALVE Ibs2/inL_3
(QUTPUT) §K3 7x10% Ib/in
3-25 m lxz
Ib-s/in L_2
EK,  19x10% Ibvi
A *EL . 1075 m fx,
Y 1S = /1n .
w ix. 56 x10* I bin
CAM(INPUT) ——jy
Fig.l: Double lever cam follower system and model.
Next, we consider the data of a sample calculation given by Young and
Shoup [27] and shown in Fig. 1 .
In state space representation; the system matrix (equation 7 and using
computer inversion) is given by
0 0 (0] 0 ~697,674 176, 744 0 0 7]
] 0 0 0 58,461 - 80,000 21,538 0
0 0 0 0 0 . 73.684 -400,000 326,315
0 0 0 0 0 0 164,859 -192,261
A= i
1 -1.776x107"% 2.6660x10710  1.776x10713 0 0 0 0 (24
0 1 -1.065x10" 1% -7.105x107"? 0 0 0 0
-3.s52x1071% 7l00sx1071® 0 0 0 0 0
-3.552x10713 s.320x1071% —2.su2ei0”! 0 0 0 0

A computer program for state space frequency response which follows eqgs.
(13) and (14) was used. The input data was the matrix A (equation 24)
and the input is defined by:
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rl* 17
0 0
0 0
= Q les/sec
0 0 wincrement 4 wpe R
by = o » by =10 , 1,000 ¢ /
. = cles/sec.
y & 0 2 0 “maximum * v \
0 0 )
0 .0 J

, We used a unit sinusoidal and cosinusoidal input and a range of frequencies
" that includes the values of the eigenvalues. This 1s because if we imput

only sine or cosine, we will have a singular matrix during the manipulation

. process.

A computer program for system identification used equatiogz (20) and (21);

: to get the original matrix A of this example. A 0.5 (10 ) or 0.005%

random error was added to the frequency response solution, but the original
matrix was not obtained. Finally, different percentages of random error

: were added to the solution. Only in the last case, 0.5 (10"10), the iden-

tified matrix is exactly the same as the original. For the other cases
between 0.5(10™%) and 0.5 (10‘8), a graph was plotted to observe the be-

: haviour of both the ral and complex part of the eigenvalues. This is

shown in Fig. 2,

: The identification computer program was then used 100 times and averaged

for the added 0.5 (10™') random error. The matrix obtained was very
similar to the original matrix A,

In addition to that, the error matrix was calculated for every case, and
the eigenvalues and eigenvectors are obtained. It can be noticed that the

: complex part of the eigenvalues of the error matrix is very small compared

with the eigenvalues of the original matrix A, The eigenvalues of the
real part are larger compared with the original eigenvalues, and for a

. 0.5 (L0—*) random error there is one eigenvalue which is large compared
" with the values of the original matrix A,

The simulated system responses for other damped non-gyroscopic systems

! show that the solution is stable [28] . It was seen that the peaks occur

for frequencies corresponding to the values of imaginary parts of the com-
plex conjugate roots, in frequency versus ampltude graphs ofuoriginal

! systems. The error sigenvalues obtained for the added random errors

(0.2% to 1.0%) are not bigger than 5% of the original eigenvalues. The
identification of the system matrix was performed one hundred times and

: averaged with a 0.5% added random error for all cases, The matrices obtai-

ned through the new identification process [28] are very good approxi-
mations to the original system matrix., The input used for the identifica-
tion process was a unit sinusoidal force. The process could also be dome::

with a unit cosinusoidal force. Both inputs can be used at the same time,

with same results obtained.
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- . CONCLUSION

" In this paper we have presented a method to determine the modal parameters

of a system. This method was verified by finding the response of a sample’

! case and the identification tests were then performed.

A conservative non—gyroscopic system was modeled and solved. The identi

: fication of the system matrix was then obtained. = With. unit sinusoidal
or cosinusoidal force as an input, we will find singularities during the

manipulation process that will not permit us to get a solution. This is

: caused because of the lack of damping in this particular case. The error

added in order to simulate real measuring conditions had to be much smaller
than in damped cases in order to get the original matrix A, Therefore,

! measurements for such systems should be very accurate so as to use such

technique effectively for undamped systems. For realistic measurement
errors, results indicate that averaging can improve the accuracy of the

' identification process.,

For cases of damped non-gyroscopic systems, however, the results obtained °

! for identification were accurate,
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NOMENCLATURE

System's matrix in state space
Forcing input (sin wt)

Forcing input (cos wt)
Identity Matrix

Interger number

Stiffness matrix in state space
Stiffness matrix

Mass matrix in state space
Mass matrix

Dimension of a vector matrix
Generalized force vector
Generalized coordinate vector
time

Input vector

r—-dimensional input vector
State Vector

Real part of complex eigenvalue
Imaginary part of complex eigenvalue
Eigenvalue of the system's matrix
Phase angle

Phase of the state variable
Frequency
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