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MODAL ANALYSIS BY STATE-SPACE  

APPROACH IN FREQUENCY DOMAIN 

S.M. Metwalli* and F. Feijo** 

ABSTRACT 

This paper tests a new procedure to identify the eigenvalue problem matrix 
"A", and thus the system's modal parameters, by utilizing the frequency • 
response of the system in state-space. A sample identification test is 
performed with added random error in order to simulate real measuring con-

: ditions. Results indicate that it is slightly difficult to identify the • 
• "A" matrix of an undamped system. The error in that system must be very : 
small for this type of system to be identified. However, when the identi-
fication is repeated several times and then averaged, the identification 
becomes more accurate. 

INTRODUCTION 

.Modal analysis can be defined as the theoretical or experimental analysis 

.of the structure's dynamic characteristics of a mechanical system in terms 
'of its modal parameters; that is, finding the eigenvalues and eigenvectors 
of the equations of motion which define the mechanical system. The develo-
pment of modal testing techniques, which took place mainly after World War- 
Ir , 	was made principally in the aircraft and space vehicle fields (Budd 
[1] ). Before 1960, frequency response determination for modal analysis 
was limited to a discrete sine testing method, and mode shape was deter- 
mined by a simple sine dwell method. Sand patterns and other similar test- 
•ing techniques were also used to determine nodal (zero amplitude) patterns, 
.During the early 1960's, the most important development was the tracking • 
filter that allowed the use of the mechanical impedance measuring analyzer; 
•mostly knuwn as the transfer function analyzer. The transfer function 
:analyzer measured frequency response by using a sinusoidal excitation 
signal to excite the mechanical system. This process made it possible to 
get frequency response plots, and from the poles; natural frequencies, and 
damping could be estimated. Another improvement was the development of a 
coquad meter which allowed the real and imaginary components of the fre-
quency response to be measured directly. Instead of using the total amp- 
,litude for the mode shape values, the quadrature response could be used to 
separate closely coupled modes. 
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Experimental modal analysis became divided into two fields: (1) the multi-
input sine dwell (MISD), and (2) the single input frequency response(SIFRO. 

The multi-input sine dwell test (MISD) was the most popular modal testing 
method. Several classical papers were published which discuss the caicul-
ation of force ratios among shakers, like Kennedy [2], Lewis [3], Asher 
[4] and Bishop [5] . tu this procedure, however only one frequency could 
be measured at a time, so it was required to have a large number of response 
ransducers in parallel to minimize the test time. 

FG the single - input frequency response method (SIFRQ) it was necessary 
easure a large number of frequency responses. This was a very slow 
.mss using existini; analog equipment at that time. But, in the late s :les minicomputer systems and the implementation of the fast Fourier 

transform algorthm in these computers made it possible to develop a Fourier 
an lysis system which could be used to measure frequency response in a 	• small fraction of the time required with the analog equipment. Cooley and 
Tukey [6] developed the Fast Fourier Transform procedure which .made all 
that possible and did some studies on complex Fourier series machine cal-
culations. Many new excitation and testing methods were developed: impact 
ife.Fing, random, pseudo-random, etc., as a result of these new Fourier 

Experimentally, the prosent technology is a continuation of the technolo-
gies developed during the sixties but much more refined. With the intro- 
duction of low cosi minicomputers,. and the development of software programs 
for modal testing, for example General Radio Time/Data Division [7] and 
Hewlett-Packard [8] , more tests are done using digital dequipment. The 

o conducting the modal Lest using a digital signal processing techni-* que is the measurement of the frequency response function between the input Forces and the responses at different locations of the structure. Modal 
parameters for detining tile dynamic characteristics of the structure are 
hen extracted from these measured functions. Substantial literature has 
alt with this approach, for example, Richardson and Potter [9]; Ramsey 
2)41] ; Klosterman and Zimmerman [12] ; Brown and others.  [13] . Single station frequency response methods have probably been developed nearly 
.heir limit Putter [14] . The multi-shaker sine dwell method, as in  end Su [15], is also reaching its practical limits. Multi-input 
As are currently being developed which are combining the best features 
th methods Allemang and others [16]. Also new non-traditional methods 
peen developed such as Ibrahim time domain (Ibrahim and others [17, 

), autoregressive  moving average (Friedman [19] ), direct parameters 

1) 
(Maattaneu [20] ), and poly reference (Vold and Rocklin 

theoretical area, the method presented here and other advances in 
—
ea will, hopefully, help in making analysis more accurate, easier 

perform and simpler to modify. 

THEORETICAL DEVELOPMENT 

Lhe absence of gyroscopic, damping, circulatory forces, the equation of 
ion of conservative system becomes 

1(t) 	Kg(t) = ()• 
	

(1) 
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We can write this equation as [22] 

M*x(t) + K*x(t) = U 

Where x(t) is the 2n-dimensional state vector: 

R(t)  = [i(t)T 1 .4(0T] T 

and 

M 	0 
	

0 I K 
M* 
	

K* 
	

(4) 

0 1 I 
	

0 

2n x 2n are real matrices and where U is a forcing vector. 

U 
	

(5) 

The final formulation in state space representation is then given by: 

x = Ax - M* U 	 (6) 

where 

 

0 1  -M-1K 

  

   

A 	-M* 
-1
K* 

 

(7) 

  

  

    

Assuming that M* is not singular, A is an arbitrary real matrix. Because 
A is real, if the eigenvalues X are complex, then they must occur in pairs: 
of complex conjugates and so must the eigenvectors x. 

The procedure presented here is based on the frequency-response technique 
using the state-space vector method, (Takahashi, Rabins and Auslander [23J) . 
The derivative operator d/dt in equ. (6) is replaced by jw to deal with 
sinusoidal steady-state (or frequency response), where w (rad/sec) is the 
angular frequency of the sinusoidal input and j 	-1. Finally, the fol.,' 
lowing form for the ith state variable in sinusoidal steady-state is 
obtained: 

xi(w) = i 
sin wt 	S. cos wt 

with 

c4i=lAicostpi si 	 1 sin 

where A. is the amplitude and 4)i  is the phase of the ith state space 
variable. 

( 8 ) 

(9) 



1 
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From equation (8), we get: 

x(w) 	[a,  -i3-1 r  sin wt 
L cos wt.., 

where 

a = 

The time derivative for x(w) is given by: 

= 	
w cos wt1 	r  sin wtl 

dt 	w cos wt.) 	] L cos wt] 

Finally, the values for L,.T and f37 are found to be (Takahashi, Rabins and 
AuslandeL [23 ]): 

a = (w2I + A2)-1  (-AS1  + wS2) 	 (13) 

-1 	_ 
;' = (w21 + A2) 	( -Ab2  - w131) 	 (14) 

The amplitude is given by: 

	

lx1.1 	
= 	✓ 

 a2 ( 	Si 	i = 	2, .... 2n 

	

1 	,  

The phase angle is obtained from: 

-I a. 
= tan 

si 

In frequency domain and for non-homogeneous equations, we start the pro-
. cedure of identifying the eigenvalue problem matrix with equation (7) 
• to (14). That process would describe reationships for sinusoidal steady-:. 

state. 

Equations (13) and (14) were derived by generalizing a vector input, 
assuming: 

Ess- 	, sin wt/ 
l' 21 L cos wt-1  

(17) 

where 1S
1 

and b
2 

are prescribed magnitudes with each as a 2n dimensional ' 
vector.  

Substituting equations (10), (12) and (17) into equation (7), we find 
after some manipulation that: 

(10) 

(12) 

(15)  

(16)  

L.. 



0 0 k
1+k2 -k

2 qi  

q2 
q3 (i
4 

k
1
y 

0 
0 
0 

(23) 

0 0 0 - ml 
0 m2  0 0 	q

2 0 0 m
3 
0 	q3 0 0 0 m
4 (14 

-k2 k2+k3 0 	0 
0 -k

3 
+k
4 

-k, 
4 

k,+k. 
4  

q1 
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6 	-WR = AA + 1 
	 (18) 

Lai 	= AS + b2 	 (19) 

Metwalli [24] shows that by measuring at 2n the w., we can get a, and 
F, for any wi, then arranging the different vectors in equation (19) to 
obtain: 

A  = [w0,17 2,1 1 w 	g 	--lw 3 	] ET T 2 2 	2, !  

	

21 	2n 2n 2,2n 	1 2 "" 

Also from equation (18), one can get [24] 

I F g 1  A = [4/1 1 1-/31,1 	1'4/2132- 13.1,2i 	I w2e2n--1,2nJ [al 1 a2n 

1 
(20)  

(21)  

The following step is to add a random error to the response so that to 
simulate real measuring conditions. Each of the ith columns of the first .  
RH matrix in equation (19) has been changed to: 

ith column = (w
i 	- g2 i 	1324) [1 + %R.E.] 	(22) 

where R.E. is the percentage of random error added. The random function 
used in the computer program causes an internal pseudorandom number gene-i 
rator to output a random number from 0 to 1. The probability distribu-
tion of these random numbers is uniform, which has been used as such for 
simplicity. Modal parameters are then obtained as the eigenvalues and 
eigenvectors of A. 

SAMPLE TEST 

A number of Cam follower systems that have been used for automotive and 
aircraft piston engines have a complex follower system involving two levers 
for motion amplification. In this example, we will consider a double 
lever Cam mechanism with a four degree of freedom dynamic system model. A 
study about modeling this system has been done by Teser and Matthew [25] 
and the equations of motion and detailed modeling procedures are also 
explained by Barkan [26] . The details of the double lever Cam follower 
system and system model are shown in Figure 1. The differential equations 
of motion of this system are written in terms of displacement variables qi, 
lumped masses mi, and linear spring stiffness K.. Damping coefficients 
are neglected by Tesar and Matthew [25]  for simplicity. 

• In a matrix form the equation of motion is 



11 X104  I b/in 

2.14 
b-sz/in 

X4. 

.95 
I b-52 /in 

3.25 
I b-s2/in 

1.075 
I b- s2  iin 

K4 	31 X104  I biin 

3 

7x 104  lb/in 

19 x104  Ib/in 

xi  

56 x104  lb/in 

UPPER 
LEVEL 

RETAIN 
5PR ININC G  

VEZ 
PUSHROD 	VALVE 

(OUTPUT) 

LOWER 
LEVEL 

CAM( INPUT) 
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Fig.l: Double lever cam follower system and model. 

Next, we consider the data of a sample calculation given by Young and 
Shoup [27] and shown in Fig. 1 . 

In state space representation, the system matrix (equation 7 and using 
computer inversion) is given by 

0 

0 

0 

0 

0 

-3.552x10
15 

-3.552x10
-15 

O 0 	0 	-697,674 	176,744 	0 	0 

o 0 	0 	53,461 	- 80,000 	21.538 	0 

O o 	0 	0 . 73,684 -400,000 	326.315 

O 0 	0 	0 	0 144,859 -192,261 

-1.776x10
-15 

2.664x10
-15 

1.776x10
15 	

0 	0 	0 	0 

1 	-1.065x10
-14 

-7.105x10
15 

	

0 	0 	0 	0 

7.105:10
-15 
 I 	0 	0 	0 	0 	0 

5.329x10
-15 

-2.842x10 
14 	

1 	0 	0 	0 	0 

A= 
(24) 

A computer program for state space frequency response which follows eqs. 
(13) and (14) was used. The input data was the matrix A (equation 24) 
and the input is defined by: 

L.. 
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g2 

0
. 

0 

0 
0 

w. increment 

wmaximum 
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= 	10 cycles/sec 

= 	1,000 cycles/sec. 

1 
0 
0 
0 
0 
0 
0 
0j 

We used a unit sinusoidal and cosinusoidal input and a range of frequencies 
that includes the values of the eigenvalues. 	This is because if we input 
only sine or cosine, we will have a singular matrix during the manipulation 

: process. 

A computer program for system identification used, equation4 (20) and (21): 

to get the original matrix A of this example. A 0.5 (10 ) or 0.005% 
random error was added to the frequency response solution, but the original 
matrix was not obtained. Finally, different percentages of random error 
were added to the solution. Only in the last case, 0.5 (10-10), the iden-

tified matrix is exactly the same as the original. For the other cases 
between 0.5(10-4) and 0.5 (10-8), a graph was plotted to observe the be-
haviour 

 

 of both the ral and complex part of the eigenvalues. This is 
shown in Fig. 2. 

; The identification computer program was then used 100 times and averaged 
for the added 0.5 (10-4) random error. The matrix obtained was very 
similar to the original matrix A. 

In addition to that, the error matrix was calculated for every case, and 
the eigenvalues and eigenvectors are obtained. It can be noticed that the 
complex part of the eigenvalues of the error matrix is very small compared 
with the eigenvalues of the original matrix A. The eigenvalues of the 
real part are larger compared with the original eigenvalues, and for a 
0.5 (10-4) random error there is one eigenvalue which is large compared 

' with the values of the original matrix A. 

The simulated system responses for other damped non-gyroscopic systems 
show that the solution is stable [28] . It was seen that the peaks occur 
for frequencies corresponding to the values of imaginary parts of the com-
plex conjugate roots, in frequency versus ampltude graphs ofaoriginal 
systems. The error sigenvalues obtained for the added random errors 
(0.2% to 1.0%) are not bigger than 5% of the original eigenvalues. The 
identification of the system matrix was performed one hundred times and 
averaged with a 0.5% added random error for all cases. The matrices obtai-
ned through the new identification process [28] are very good approxi-
mations to the original system matrix. The input used for the identifica-
tion process was a unit sinusoidal force. The process could also be done: 
with a unit cosinusoidal force. Both inputs can be used at the same time, 
with same results obtained. 
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CONCLUSION 

In this paper we have presented a method to determine the modal parameters:  
of a system. This method was verified by finding the response of a sample' 

! case and the identification tests were then performed. 

A conservative non-gyroscopic system was modeled and solved. The identi ' 
fication of the system matrix was then obtained. 	With unit sinusoidal 
or cosinusoidal force as an input, we will find singularities during the 
manipulation process that will not permit us to get a solution. This is • 
caused because of the lack of damping in this particular case. The error 
added in order to simulate real measuring conditions had to be much smaller 
than in damped cases in order to get the original matrix A. Therefore, ' 
measurements for such systems should be very accurate so as to use such 
technique effectively for undamped systems. For realistic measurement 
errors, results indicate that averaging can improve the accuracy of the ' 
identification process. 

For cases of damped non-gyroscopic systems, however, the results obtained' 
for identification were accurate. 
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NOMENCLATURE 

System's matrix in state space 
Forcing input (sin wt) 
Forcing input (cos wt) 
Identity Matrix 
Iaterger number 
Stiffness matrix in state space 
Stiffness matrix 
Mass matrix in state space 
Mass matrix 
Dimension of a vector matrix 
Generalized force vector 
Generalized coordinate vector 
time 
Input vector 
r-dimensional input vector 
State Vector 
Real part of complex eigenvalue 
Imaginary part of complex eigenvalue 
Eigenvalue of the system's matrix 
Phase angle 
Phase of the state variable 
Frequency 

L ..J 

A 
bi  

b2 

K* 

M* 
M 

: q  

• 
ff 
a 

A 

. 	(1) 
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