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ABSTRACT 

.A novel approach is introduced by which the distorted signal due to elect- :  

:ronic jamming is reconstructed. An ideal measurement trajectory in the 
observation space is derived. Using an LOG approach the deviation between 

.the actual and ideal measurements are obtained. Measurements deviation 

.covariance matrix is formed and a signal distortion detection criterion is 
'established. The distorted signal is disregarded and a reduced order 
estimator is derived to reconstruct the tracking data. 
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GENERAL DESCRIPTION 

During the past four decades the problem of tracking and intercepting a 
flying target has recieved a great deal of interest. On the other hand 
'target evasive actions also recieved the interest of many investigators. 
Since tracking is mainly accomplished by reflected electromagnetic wave 
signals, electronic devices fitted in the target may distort the signal thus 
resulting in wrong tracking information. Such deception ,techniques known as 

electronic counter measures (ECM). The tracking signal that is mostly sen- 

setive to distortion is the range signal. Such errounous range data yield 

'indicated false target position. 
The target model in tracking coordinates (r,0<,1) is given by; 
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'where r is the range, 04. iss the azimuth angle,l is the elevation angle and 
, ; i=1,2,3 are random variables with variances cr. and bandwidth w

o  

.ratio
./sec. The autocorrelation function of these random processes are; 
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.These coloured random processes could be generated from white gaussian 

'random vectors S in the following manner; 
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iIn state space format, Eqns. (1) and (3) may be written as; 
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; It is seen from Eqns.(4) that we are dealing with a nonlinear system with 
nine dimensional state vector. In vector form Eqns. (4) may be written as; 

:where 

(5) 
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'On the other hand the observation equation is given by; 

z = Hx 	v 
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An extended Kalman filter (EKF) may thus be constructed from Eqns.(4) and 
(6) to estimate the state vector and thus determining the target position 
and velocity. The reliability of the estimated target position and veloci .-i 
ty depends upon the observation accuracy. Errounous measurements lead to 
wrong estimates. Therefore in the presence of electronic counter measures 
(ECM) straight forward estimation of target position and velocity is not 
valid. Since the range measurement is the one that is seriously affected ' 
by electronic jamming,it may be dropped from the observation information. 
In that respect the extended Kalman filter convergence rate will be reduc- 

i ed. 
The present work introduces a technique derived from a methodology devel-
oped by the auther (1,2) regarding sensor failure detection and isokation. 
Using such technique,the distorted signal will be detected and isolated. 

Horeover,a reduced order observer is established and utilized instead of 
Kalman filter thus expediting the estimation process. 

MATHEMATICAL ANALYSIS 

A nonlinear discrete time stochastic process may be modeled as; 
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.where x is an n-dimensionai state vector, u is an ni-dimensional control 
'vector, z is a p-dimensional observation vector and 0(.) and h(.) are non-
linear functions of their E:guments. W and v are white guassian process and 
!measurements noise vectors respectively. Equation (7) may be linearized by 
introducing the following difference vectors,reference (3); 
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The linearized form of Eqn.(7) is thus; 
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The present problem has uonredundant observations,since the number of mea-
surements is less than the number of state variables. Introducing the obs-i 

:ervable and nonobservable state subvectorstd and ), respectively such that; 

sTk  = 	A 
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Based on Eqns. (9) the following equation may be derived; 
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Equation (1U) is an ideal measurement trajectory equation, i•e• measurements 

 

bbtained by perfect sensors Should satisfy it identically. Let's dem)? the 

deviation of the actual measPrements from.the ideal ones by AY=.y - y , 

where y is the ideal observation difference vector and y
m  is the actual ohs:- 

Srvation difference vector. In that respect measurements deviation propagat- 

ion equation 'ay be obtained, from Eqn.(10) as; 
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Apropagation equation for the nonobservable subvector of state may be 

obtained from Eqn. (9a) as; 

"k 
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.Equations (11) and (12) are coupled propagation equations for Ay and X. 
:Inspection of Eqns.(10) and (11) reveals that observations deviation prop-; 

agation are generated from imperfect measurements, i.e. when Eqn. (10) is 
not satisfied identically Equation (11) may be written in the more conven- 

;lent form 
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The magnitude of observation deviation propagation depends upon the magnit- 
tde of vector 	. The permissible observation deviation for nondistorted 
(nonjammed) measurements may'. be obtained by determining the nonzero minimum :  
of vectors cs, y and E . In that respect the following performance index is to 
be minimized subject to the propagation constraints given by Eqns. (12) and 
(13); 
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(14) 

where A and U are suitably chosen weighting matrices. 
Following the standard approach for LOG problems we get; 
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Substitution  of Eqn. (15a) into Eqn. (13a) yields; 

— 	 .4c 
ykid  = ( I + bk Sk+1 ) 	yk 

+ (16) 

It is seen from Eqn.(16) that the permissible observations deviation are 

generated entirely from process and measurements noise vectors,i.e. from 

process model and measurements uncertainities. It is more convenient to des:- 
bribe the permissible observations deviation in terms of a covariance matrix. 
Introducing the definitions; 

= Etky & yT  k 	k 	R  k = E  

The permissible observations deviation covariance matrix propagation may be 
pbtained from Eqn. (16) as; 
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deriveng Eqn.(17) it was assumed that there is no cross correlation bet-. 
'weer 	y and vt.-*  . On the other hand the actual observations deviation cov- • 
ariance matrix may be obtained from Lqn.(11) as; 
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and the estimates ay
a  and )\ are obtained from Eqns. (11) and (12) as 
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The diagonal elements of the 	matrices TI' and T1-a represent the per-` 
nvissible and the actual deviations of the relevant measurement signals res-
pectively. In that respect,comparison betwe'en such deviations will determine 
the reliability of the measurement signal. The following criterion may thus' 

be established; 
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Where W is a positive definite symmetric matrix that accounts for computat-
ions rounding off errors. From Eqn. (20) it is seen that for&.11-z., i: <:0 this 

means that the i th. measurement is distorted and thus it has to be disreg-i 
arded. An isolation procedure for the distorted signal is shown in detail 
in reference 1. Computation' procedure and initialization are shown in detail 

in reference 2. Eqn.(19b) is a reduced order estimator for the unobserved 
state difference subvectorA . In that respect we do not have to use Kalman•  

filter thus reducing a great deal the computation time. 

COMPUTATIONAL PROCEDURE 

The target model equations in continuous-time form as given by Eqns. (4) are 

discritized with sample time '25. The differencing linearization as 
indicated by Eqns. (8) results in the following matrices; 
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e(3 ) = 	0 (3 ) is a (3x3) 	identity matrix 

.Inspection of the matrices  involved shows that their elements are functionS 

•of some of the state variables evaluated at previous steps. Those state • • 

variables are namely (r,b,:;;, rri , 32  ,S3 ). It is seen that the most influe-
ntial state variable that affects the tracking accuracy is the range. The 
'robustness of a control:system depends upon the accuracy of the coefficient , 
matrices elements. To increase the degree of robustness of the present 
scheme the estimated valueS of the state variables appearing in the coeff-• 

•icient matrices are
0) 
used.inmction of Eqns. (17)-(19) and the expressions •  

for matrices J , M 
	
and U) • reveals that the estimation accuracy of the 

tracking parameters increases as the sample time decreases and the range 
:increases. To initialize the computation procedure an initial fix from a 
two tracking units (TTU) for the range measurement is utilized, Fig. 1. 
Denot4T9 the tracking parameWs from tracking units 1 and 2 respectively 
by (r1 1 , c{(° , ,17 (1) ) and W 1 , .q(1, 11 (21). The following relations may be 

1 
obtained; 	1 	
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:where d and d are the eastward and northward distances between the trac4 
king stations respectively. Considering tracking unit number 1 to be the 

Lmain tracking station,the following relation may be obtained from Eqns.(21); 
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Equation (22) is the one to be used for initializing the range.The block 

'diagram of the estimation process for tracking information in the presence 

of electronic counter measures (ECM) is shown in Fig. 2. 	i 

CONCLUSION - 

A neW methodology is presented for determining the tracking parameters of a' 
target in the presence of electronic counter measures (electronic jamming). 
The concept introduced is based on establishing a permissible signal devia-

:  

.tion defined by a covariance matrix. Signal distortion detection criterion 
'is then derived which determines the distorted signal. The distorted signal 
is disregarded and the tracking parameters are estimated by a derived simp-:  

,lified reduced order estimator. The resulting algorithm has been demonstra 
.tedsuccessfulYbysimulatIng different signal distortion patterns on a 

digital computer. 
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