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Abstract. Adaptive cruise control (ACC) plays a crucial role in enhancing safety and 

efficiency in autonomous and electric vehicles by regulating vehicle speed and maintaining 

safe following distances. This study evaluates ACC performance under two distinct driving 

scenarios: steady-speed following, where the ego vehicle must track a lead vehicle maintaining 

a constant velocity, and stop-and-go traffic conditions, which require frequent acceleration and 

deceleration to adapt to dynamic traffic flow. By implementing a two-level proportional 

integral derivative (PID) control system within the CARLA simulation environment, we 

conduct a detailed assessment of key performance metrics, including following distance 

accuracy, control stability, and deviation from ISO-defined safe distances. In the steady-speed 

scenario, the system is expected to achieve smooth speed tracking with minimal deviations, 

ensuring a stable and predictable driving experience. In contrast, the stop-and-go scenario 

poses greater challenges, as the ego vehicle must respond rapidly to sudden changes in traffic 

conditions while maintaining control precision. The study explores how the controller adapts to 

these variations, analyzing its ability to minimize excessive braking, maintain appropriate 

acceleration, and optimize safety without compromising comfort. Our findings highlight the 

system's capability to maintain stability in steady-speed conditions while demonstrating 

adaptability in dynamic stop-and-go situations. This research underscores the importance of 

refining ACC strategies to accommodate diverse driving conditions, ultimately improving the 

performance and reliability of autonomous vehicle control systems in real-world environments. 

1. Introduction 

The rapid evolution of automotive technologies has positioned ACC as a cornerstone of modern 

autonomous vehicles (AVs) and electric vehicles (EVs). The integration of ACC into AVs and EVs 

has become increasingly significant [1-2]. In AVs, reliable ACC systems are essential for ensuring 

safe navigation through complex traffic environments, as highlighted by Paden et al. [3] and Tsugawa 

et al. [4-5]. For EVs, optimized ACC not only enhances safety but can also improves energy 

efficiency, which is a critical factor considering the importance of battery life in EV operation [6]. 

Studies have shown that fine-tuning control strategies in ACC can lead to measurable improvements in 

energy consumption, thereby extending the driving range of EVs [7]. 
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ACC systems automatically adjust vehicle speed to maintain a safe following distance, thereby 

reducing collision risks and enhancing driving comfort. Much of the traditional research on ACC has 

focused on environmental challenges like sensor performance degradation in adverse weather 

conditions [7-8]. The influence of distinct driving modes on ACC behavior remains a largely 

underexplored area. With the increasing prevalence of AVs and EVs, there is a critical need for control 

systems that are not only safe and efficient but also adaptable to a range of driving styles. In AVs, 

reliable ACC is essential for managing the complexities of dynamic traffic environments, while in 

EVs, optimizing ACC performance can directly contribute to better energy management and extended 

battery life. A key aspect of ACC performance is maintaining a safe following distance. The ISO 

15622:2009 standard defines performance requirements and test procedures for ACC systems, 

ensuring they maintain appropriate gaps to minimize collision risks [9]. Empirical studies have 

confirmed that adherence to these standards not only improves safety but also contributes to smoother 

traffic flow [9-11]. Additional investigations have explored how control strategies can be optimized to 

consistently meet or exceed these ISO guidelines, reinforcing the importance of integrating 

standardized safe distance calculations into ACC system design [9]. 

Recent developments in simulation technology have greatly facilitated ACC research. The CARLA 

simulator, introduced by Dosovitskiy et al. [12] and later expanded by Dosovitskiy and Ros [13], 

offers a high-fidelity, open-source environment that provides precise ground-truth data. This level of 

precision is crucial for validating control algorithms in a repeatable and controlled manner. While 

other simulation platforms such as PreScan and VISSIM have been used historically, CARLA’s ability 

to replicate complex urban driving scenarios without sensor noise makes it particularly well suited for 

our study [13]. The CARLA simulator, which offers a state-of-the-art, open-source platform for the 

development and testing of autonomous driving technologies, providing a high-fidelity environment 

for evaluating control algorithms and vehicle behavior in diverse scenarios. Its ability to provide high-

fidelity, ground-truth data that is free of the noise and variation that come with real-world sensor 

readings makes sure that evaluations of performance are accurate and can be repeated. This precision 

is crucial for systematically assessing control strategies under controlled yet diverse driving scenarios. 

Also, CARLA's adaptability lets you quickly make prototypes and test different control settings over 

and over again. This makes it a great place to see how different driving modes affect ACC 

performance [7,8,13]. 

ACC has evolved from early basic implementations to sophisticated control systems integral to 

modern autonomous vehicles. Rajamani's early work [1] laid the groundwork for ACC systems by 

establishing rules for how vehicles behave, and early experiments set the stage for automated speed 

control in traffic. Over the years, research has expanded to address various operational challenges, 

from sensor inaccuracies in adverse weather to the complexities of real-time decision-making in 

dynamic traffic conditions [1,3]. Vahidi and Eskandarian [15] provide a comprehensive overview of 

how early research in intelligent collision avoidance and autonomous driving spurred advances in 

ACC technology.  

Traditional methods, like the PID controller, are used by many researchers. It is still one of the most 

popular methods because it is easy to use and works well in real-time control situations [7-8]. Huang 

et al. [17] demonstrated that PID controllers can maintain stable inter-vehicle spacing across various 

traffic scenarios, while additional studies have fine-tuned PID parameters to balance responsiveness 

and comfort. 

Intelligent controllers were created to get around the problems that linear PID controllers have in non-

linear traffic environments [18]. Fuzzy logic controllers that can adapt to uncertain situations have 

been studied [19]. Recent research, like that by Li et al. [20], shows that Model Predictive Control 

(MPC) is a strong alternative that improves control actions over a limited time frame. MPC methods 

take limitations and future system behavior into account, which makes them more reliable in situations 

where traffic changes quickly.  

Researchers have developed hybrid control methods that integrate PID, fuzzy logic, and Model 

Predictive Control (MPC) to leverage the strengths of each approach while mitigating their individual 

limitations. This combination enhances control precision, adaptability, and robustness, allowing for 

improved system performance across diverse driving conditions [21]. Schindler [10] and later research 
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have shown that these hybrid methods can improve ACC performance by changing control parameters 

on the fly based on the current driving conditions. 

The main aspects covered in this study are: 

• ACC scenarios: The study evaluates ACC performance in two driving conditions: steady-speed 

following, where the ego vehicle maintains a constant velocity, and stop-and-go traffic, which 

requires frequent speed adjustments. 

• Two-level PID control implementation: A hierarchical control system regulates acceleration and 

braking. The upper-level controller determines acceleration based on real-time inputs, while the 

Lower-level controller ensures smooth throttle and braking transitions. 

• Safety and compliance: Following distances adhere to ISO 15622 standards, aligning with industry 

safety guidelines. 

• CARLA Simulation Environment: The CARLA platform provides a high-fidelity, modular testing 

ground for ACC evaluation, enabling realistic vehicle behavior modeling, customizable traffic 

scenarios, and precise data collection for performance assessment. 

The remainder of this paper is structured as follows: section 2 methodology, including the two-level 

PID control system, detailed vehicle modeling, simulation setup using CARLA, and data collection 

and performance metrics. section 3 results, and section 4 conclusion  

2. Methodology 

This section outlines the framework for evaluating ACC performance. The present approach integrates 

a hierarchical two-level PID control system, rigorous safe distance computations, detailed vehicle 

dynamics modeling, and a high-fidelity simulation environment using CARLA. As illustrated in 

Figure 1, the system workflow is structured into six key stages. The process begins with Scenario 

Setup, where the simulation parameters, including road conditions, vehicle behaviours, initial speeds, 

and sensor configurations, are defined using Python and visual studio (VS) Code. The two-level PID 

Controller regulates the ego vehicle’s acceleration and braking, where the upper-level controller 

computes the desired acceleration based on safe distance calculations, and the lower-level controller 

converts this into throttle and brake commands for vehicle actuation. 

Following this, vehicle dynamics & sensor data collection takes place within CARLA, where the 

control signals update the ego vehicle’s state, and sensor data (e.g., speed, distance, and acceleration) 

is recorded in real time. A Feedback Loop ensures adaptive control by continuously feeding the 

measured vehicle states (speed, acceleration, and distance) back to the PID controller, allowing real-

time adjustments. The recorded sensor data is then stored in an Excel-based dataset during the data 

logging stage, facilitating structured analysis. Finally, in the Performance Analysis stage, the logged 

data is processed using Python to evaluate key ACC performance metrics.  This structured 

methodology ensures a systematic and data-driven evaluation of the ACC system, leveraging realistic 

vehicle dynamics modeling and high-fidelity simulation data. 

 

 
Figure 1. Overall System Framework for ACC Simulation 

2.1. Two-level PID control system 

The ACC controller employs a hierarchical two-level structure to regulate both speed and following 

distance efficiently. It ensures real-time adjustments by modulating acceleration and braking based on 
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traffic conditions. By continuously monitoring inter-vehicle distance, speed, and acceleration, the 

controller minimizes abrupt maneuvers, improving stability. The upper-level controller processes 

kinematic data and external conditions to compute necessary acceleration changes. Using a PID 

control strategy, it dynamically regulates the safe following distance, ensuring smooth acceleration 

and deceleration. The controller continuously refines its parameters based on real-time deviations in 

inter-vehicle distance, speed variations, and traffic density, maintaining adaptive and responsive 

driving behavior. As illustrated in Figure 2, the two-level PID control system consists of two 

hierarchical levels to manage the ego vehicle’s longitudinal dynamics. The system begins with the ISO 

safe distance equation, which calculates the required safe following distance based on the ego 

vehicle’s speed and reaction time, following ISO 15622:2009 standards. The upper-level controller 

determines the distance error, representing the deviation between the real-time measured distance and 

the computed safe distance. The PID-based control strategy computes the desired acceleration to 

maintain an optimal following distance. The lower-level controller then translates this desired 

acceleration into precise throttle and braking commands. The system calculates an acceleration error 

by comparing the desired acceleration with the actual acceleration measured from the vehicle’s 

dynamics. This ensures that the ego vehicle follows the computed reference acceleration while 

compensating for external factors such as road conditions and aerodynamic drag. The sensors data 

Module collects real-time vehicle speed, acceleration, and inter-vehicle distance information. This data 

is then used in a feedback loop, continuously refining control actions based on real-time driving 

conditions. The vehicle dynamics block processes the control signals and updates the vehicle’s actual 

acceleration and speed. These outputs are continuously fed back into the controller, allowing for 

adaptive control adjustments. 

 
Figure 2. Two-level PID control system architecture 

The upper-level controller calculates the distance error, which is the difference between the computed 

safe following distance and the real-time measured distance, as follows:  

 𝑒(𝑡) = 𝑑safe(𝑡) − 𝑑(𝑡) (1) 

where: 𝑑safe(𝑡) represents the computed safe following distance, and 𝑑(𝑡) is real-time measured 

distance to the preceding vehicle. The acceleration reference is then computed as: 

 𝑎ref(𝑡) = 𝐾𝑝1 𝑒(𝑡) + 𝐾𝑖1  ∫ 𝑒(𝜏)
𝑡

0

𝑑𝜏 + 𝐾𝑑1

𝑑𝑒(𝑡)

𝑑𝑡
 (2) 

where 𝐾𝑝1, 𝐾𝑖1, and 𝐾𝑑1 are the proportional, integral, and derivative gains, respectively. The lower-

level controller is responsible for translating the desired acceleration into precise throttle and braking 

commands, ensuring the ego vehicle's actual acceleration accurately follows the reference 

acceleration. This controller continuously processes real-time data to compute control signals that 

adjust the vehicle’s longitudinal dynamics. By compensating for external disturbances such as road 

grade and aerodynamic drag, it enhances the robustness of the ACC system in diverse driving 

conditions. The acceleration error is computed as: 

 𝛥𝑎(𝑡) = 𝑎ref(𝑡) − 𝑎(𝑡) (3) 

where 𝑎(𝑡) is the actual acceleration. The control signal for throttle/braking is then determined as: 

 𝑢(𝑡) = 𝐾𝑝2 Δ𝑎(𝑡) + 𝐾𝑖2 ∫ Δ𝑎(𝜏)
𝑡

0

 𝑑𝜏 + 𝐾𝑑2

𝑑 Δ𝑎(𝑡)

𝑑𝑡
 (4) 

Where 𝑢(𝑡) is the control signal for throttle and braking; 𝐾𝑝2, 𝐾𝑖2, and 𝐾𝑑2 are the corresponding PID 

gains.  
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In a discrete-time implementation, the control law is formulated as: 

 𝑢[𝑘] = 𝑢[𝑘 − 1] + 𝐾𝑝(𝑒[𝑘] − 𝑒[𝑘 − 1]) + 𝐾𝑖  𝑒[𝑘] Δ𝑡 + 𝐾𝑑

𝑒[𝑘] − 2𝑒[𝑘 − 1] + 𝑒[𝑘 − 2]

Δ𝑡
 (5) 

where k is the discrete time index and Δt is the sampling interval. 

 

The safe following distance is an essential parameter in the upper-level controller's decision-making 

process, ensuring that the ego vehicle maintains a safe gap from the lead vehicle while optimizing 

traffic flow. The calculation accounts for the reaction time of the driver or control system, the vehicle's 

deceleration capability, and a minimum safe margin to accommodate uncertainties. This approach 

ensures smooth vehicle operation under varying traffic conditions and enhances overall driving safety. 

Based on ISO 15622:2009 [9], the safe following distance is computed as follows: 

 𝑑safe(𝑡) = 𝑣(𝑡) 𝑡reaction +
𝑣(𝑡)2

2 𝑎dec
+ 𝑑min (6) 

where: 𝑣(𝑡) is the vehicle’s speed, 𝑡reaction is the driver's (or system’s) reaction time, 𝑎dec is the 

maximum deceleration (braking capability), and 𝑑min is an additional safety margin. 

 

2.2. Detailed Vehicle Modeling 

A precise vehicle model is crucial for accurately simulating ACC performance, capturing the forces 

influencing vehicle motion. The longitudinal dynamics model used in this study incorporates 

aerodynamic drag, rolling resistance, and traction forces, which collectively govern vehicle 

acceleration and deceleration. The vehicle's motion is governed by Newton’s Second Law:  

 𝑚 
𝑑𝑣(𝑡)

𝑑𝑡
= 𝐹traction(𝑡) − 𝐹drag(𝑡) − 𝐹roll(𝑡) (7) 

where: 𝑚 is the vehicle mass, 𝐹traction(𝑡) is the force generated by the motor, 𝐹drag(𝑡) is the 

aerodynamic drag force, and 𝐹roll(𝑡) is the rolling resistance force. The aerodynamic drag force is 

modelled as: 

 𝐹drag(𝑡) =
1

2
 𝜌 𝐶𝑑  𝐴𝑓  𝑣(𝑡)2 (8) 

where: ρ is the air density, 𝐶𝑑 is the drag coefficient, and 𝐴𝑓 represents the vehicle’s frontal area, 

influencing aerodynamic resistance. The rolling resistance force, caused by the deformation of tires on 

the road surface, is given by: 

 𝐹roll(𝑡) = 𝐶rr 𝑚 𝑔 (9) 

with 𝐶rr representing the rolling resistance coefficient and 𝑔 is the gravitational acceleration and 

represents the vehicle mass. The traction force, generated by the vehicle’s powertrain, is expressed as: 

 𝐹traction(𝑡) = 𝜂 𝑢(𝑡) (10) 

where η is a scaling factor incorporating drivetrain efficiency and torque conversion and represents the 

control input that modulates acceleration. This detailed vehicle model provides the necessary 

foundation for simulating realistic ACC behaviours, ensuring accurate controller evaluation across 

diverse driving conditions. 

2.3. Simulation Setup Using the CARLA Simulator 

CARLA simulator is utilized as the primary simulation platform due to its high-fidelity, open-source 

architecture, which enables realistic and controlled evaluation of ACC performance. CARLA 

replicates urban and highway driving scenarios with accurate road geometries, dynamic traffic 

interactions, and variable environmental conditions. It provides precise measurements of vehicle 

dynamics and inter-vehicle interactions, ensuring accurate performance evaluation. The simulated 

vehicle model used in the study is a Tesla Model 3, representing a modern autonomous electric 

vehicle, recording critical driving parameters, including speed 𝑣(𝑡), acceleration 𝑎(𝑡), throttle and 

brake inputs 𝑢(𝑡), and inter-vehicle distance 𝑑(𝑡). These data points provide an in-depth assessment 

of ACC behavior across different driving conditions. The simulation scenarios are designed to 

encompass a range of real-world conditions, including variations in traffic density, road layouts, and 
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environmental factors. ACC performance is evaluated under two distinct scenarios: case 1 (steady-

speed following), where the ego vehicle follows a lead vehicle maintaining a constant velocity, and 

case 2 (Stop-and-Go Traffic), which involves frequent acceleration and deceleration to adapt to 

dynamic traffic conditions. These scenarios test the system’s robustness and adaptability in 

maintaining safe following distances and stable control. to test the system’s robustness and 

adaptability. This simulation framework allows for a controlled yet realistic evaluation of ACC 

strategies, ensuring reliable insights into system performance under diverse driving conditions. 

2.4. Data Collection and Performance Metrics 

Data is captured from CARLA’s high-frequency output, logged at a high sampling rate, and exported 

to an Excel sheet for post-processing. The dataset includes time-series data for key parameters such as 

vehicle speed 𝑣(𝑡), acceleration 𝑎(𝑡), throttle/brake command 𝑢(𝑡), inter-vehicle distance 𝑑(𝑡), and 

computed safe distance 𝑑safe(𝑡) (from Equation (6)), ensuring comprehensive coverage of ACC 

performance metrics across different scenarios. Data processing was performed to extract key 

performance measures—mean, minimum, maximum, standard deviation, and variance. In addition, 

visualization techniques including radar charts, histograms, and time‐series plots were employed to 

provide deeper insights into ACC behavior.  

3. Results 

3.1. Two-level PID Controller Performance Evaluation 

The performance of the two-level PID controller was evaluated under two distinct test scenarios using 

the CARLA simulator. The first scenario involved two vehicles initially moving at a constant speed of 

50 km/h, while the second scenario analyzed the controller’s behavior when both vehicles started from 

rest. The assessment primarily focused on maintaining a safe following distance and achieving smooth 

speed adaptation while responding to the lead vehicle’s motion. 

 

Case 1: Both Vehicles Initially Moving at 50 km/h 

In this scenario, both the ego and lead vehicles were initially set to travel at 50 km/h. The two-level 

PID controller was tasked with adjusting the acceleration and deceleration to maintain a safe following 

distance. The distance-time plot (Figure 3) indicates that the actual following distance started at 30.0 

m, while the ISO-defined safe distance was initially 33.795 m. As the controller adjusted the speed, 

the actual following distance gradually increased and stabilized at 35.026 m, aligning closely with the 

final ISO safe distance of 35.201 m. This demonstrates the controller’s ability to effectively regulate 

the vehicle’s spacing while ensuring safety compliance. As the ego vehicle approached stability, the 

ISO-defined safe distance fluctuated within the range of 33.5 m to 35.2 m due to minor variations in 

speed. The actual following distance remained responsive, tracking these variations with a lag of 0.2 m 

to 0.5 m. The speed-time plot (Figure 4) shows that the ego vehicle initially traveled at 48.668 km/h, 

matching the lead vehicle’s speed. Initially, a slight dip in ego speed was observed due to early 

braking, bringing the speed momentarily down to 44.0 km/h before gradually stabilizing. The vehicle 

recovered and reached 50.021 km/h, closely following the lead vehicle’s final speed of 49.992 km/h. 

These results validate the effectiveness of the two-level PID strategy in maintaining a stable car-

following behavior even when vehicles start with a nonzero initial velocity. 
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Figure 3. Distance-time plot for (case 1). Illustrates the evolution of the actual following distance and 

ISO-defined safe distance over time when both vehicles initially travel at 50 km/h 

 

 

Figure 4. Speed-time plot for (case 1). Depicts the ego vehicle’s speed response relative to the lead 

vehicle over time in case 1 

Case 2: Both Vehicles Starting from Rest 

In the second scenario, both vehicles were initially stationary, and the ego vehicle had to accelerate 

and adjust its speed while following the lead vehicle. The distance-time plot (Figure 5) illustrates that 

the following distance initially started at 10.0 m, which was above the ISO-defined safe distance of 2.0 

m since at standstill the safe distance equals the minimum margin. As the vehicles accelerated, the 

controller successfully increased the gap, stabilizing it at 34.643 m, closely aligning with the final 

ISO-defined safe distance of 35.155 m. This indicates that the PID controller effectively maintained a 

gradual and stable increase in the gap, avoiding abrupt accelerations that could compromise passenger 

comfort. During the acceleration phase, the ISO-defined safe distance increased steadily from 2.0 m to 

35.155 m, with occasional minor oscillations within ±0.5 m due to the lead vehicle’s acceleration 

pattern. The actual following distance closely mirrored this trend with a minor delay of approximately 

0.3 to 0.7 seconds, showing the controller’s ability to adapt dynamically. The speed-time plot (Figure 

6) highlights a controlled acceleration phase, where the ego vehicle initially started from 0.0 km/h and 

progressively increased its speed to 49.977 km/h. The lead vehicle, which also started from 0.0 km/h, 

reached a final speed of 49.08 km/h. 
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Figure 5. Distance-time plot for case 2. Shows the actual following distance and ISO-defined safe 

distance variations when both vehicles start from rest 

 

 

Figure 6. Speed-time plot for case 2. Represents the ego vehicle’s speed adaptation as it follows the 

lead vehicle from a stationary start 

The controller efficiently mitigated excessive acceleration spikes, maintaining a smooth acceleration 

ramp with minor deviations of ±1.5 km/h. Unlike conventional PID controllers that often struggle with 

aggressive responses in stop-and-go conditions, the two-level PID strategy demonstrated superior 

adaptability, reducing speed mismatches and unwanted jerks. The ISO-defined safe distance continued 

to fluctuate within a narrow range of 34.5 m to 35.2 m due to the minor variations in the lead vehicle's 

acceleration. The actual following distance effectively tracked these variations with a delay of 

approximately 0.3 to 0.6 seconds, ensuring a dynamic and adaptive response. By the end of the test, 

the ego vehicle maintained a near-perfect following profile with less than 1% deviation from the 

desired trajectory, demonstrating the robustness of the two-level PID controller under varying 

conditions. 

3.2. Safety Analysis of Following Distance 

The performance of the two-level PID controller was further analyzed in terms of safety by evaluating 

the actual following distance relative to the ISO-defined safe distance. The goal was to ensure that the 

ego vehicle consistently maintained an appropriate gap from the lead vehicle, minimizing the risk of 

unsafe proximity while optimizing traffic flow efficiency. The safe distance tracking plot (Figure 3) 

for case 1 illustrates that the actual following distance started at 30.0 m, while the ISO-defined safe 

distance was 33.795 m. The actual following distance initially deviated slightly, fluctuating between -

3.8 m to 2.3 m relative to the ISO-defined safe distance. However, as the controller stabilized, the 
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following distance remained well-aligned, converging around 34.939 m on average with a standard 

deviation of 0.887 m. These results confirm that the two-level PID controller effectively reduces 

deviation from the required safe distance, ensuring that the ego vehicle maintains a safe yet efficient 

following distance even when minor variations in lead vehicle speed occur. For case 2, where both 

vehicles started from a stationary position, the safe distance tracking plot (Figure 5) indicates a more 

dynamic adjustment phase. Initially, the actual following distance was 10.0 m, while the ISO-defined 

safe distance was 2.0 m, leading to an overshoot. However, as acceleration progressed, the controller 

successfully adjusted the following distance, bringing it into alignment with the ISO-defined safe 

range. The final following distance stabilized at 29.941 m, closely following the ISO-defined 

requirement of 29.816 m, with a maximum deviation of 8.0 m and a minimum deviation of -1.2 m. 

The higher standard deviation of 7.97 m reflects the increased variability in tracking accuracy during 

the acceleration phase, which gradually smoothened over time. These findings indicate that the 

controller efficiently adapts to varying speed conditions, particularly in stop-and-go situations, 

ensuring a gradual and controlled increase in the following gap. 

To evaluate how accurately the ego vehicle maintained the safe following distance, a histogram of 

distance error was generated for both test cases, showing the difference between the actual following 

distance and the ISO-defined safe distance. The histogram illustrates the distribution of distance 

errors, providing insight into how consistently the ego vehicle maintained the safe following distance 

over time. A well-centered distribution around zero indicates strong adherence to the safe following 

distance, while a wider spread suggests increased variations and necessary adjustments by the 

controller. For case 1, where both vehicles started at a constant speed of 50 km/h, the histogram 

(Figure 7) shows a high concentration of distance error values close to zero, confirming that the 

controller effectively maintained the safe following distance with minimal error. The deviations are 

mostly within a narrow range of -2.0 m to 1.5 m, with a mean deviation of 0.13 m and a standard 

deviation of 0.61 m. This indicates that the controller effectively reduced fluctuations, ensuring stable 

and predictable car-following behavior.  

 

 

Figure 7. Histogram of distance error for case 

1. The distribution shows that the controller 

maintained a stable following distance with 

minimal error, demonstrating strong adherence 

to the ISO-defined safe distance. 

 

Figure 8. Histogram of distance error for case 

2. The distribution indicates greater initial 

fluctuations in following distance due to 

acceleration, with a long tail towards negative 

errors before stabilizing. 

 

The histogram demonstrates that the system rarely deviated significantly from the safe distance, 

highlighting the strength of the controller in steady-speed conditions. In contrast, case 2, where both 

vehicles started from rest, exhibits a wider distribution of distance error values (Figure 8), particularly 

in the early acceleration phase, indicating greater fluctuations before stabilizing. The histogram 

indicates a broader spread, particularly in the early acceleration phase, with deviations ranging from -
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8.0 m to 0.5 m. The mean deviation was 1.12 m, and the standard deviation was 0.98 m, significantly 

higher than in case 1. The histogram shows a strong clustering of values around small deviations, but 

the long tail towards -8.0 m suggests the ego vehicle initially lagged behind the expected safe distance 

before successfully adjusting. These results indicate that, although the controller faced greater 

challenges in a stop-and-go scenario, it effectively reduced errors over time, demonstrating strong 

adaptability in dynamic driving conditions. 

3.3. Statistical Performance Analysis 

This section presents a statistical performance analysis to quantify the effectiveness of the two-level 

PID controller in regulating vehicle behaviour. To better understand the controller's efficiency, Table 1 

presents key statistical metrics comparing both test cases, providing insights into the system's stability 

and adaptability. This table highlights the controller's strong performance in maintaining a stable 

following distance in case 1, while demonstrating adaptability in case 2 under stop-and-go conditions. 

To visually represent these metrics, Figure 9 presents a radar chart illustrating the normalized values 

of the key statistical metrics. The values were scaled between 0 and 1 to provide a comparative 

visualization of the controller's behavior across both cases. The radar chart provides a clear depiction 

of the relative differences between the two scenarios. case 1, represented by the blue plot, shows a 

more consistent and stable response, particularly in terms of maintaining a lower standard deviation of 

distance error and a minimal deviation from the ISO-defined safe distance. Meanwhile, case 2, shown 

in orange, exhibits a higher maximum deviation and a greater variance in following distance, which 

corresponds to the more dynamic nature of the stop-and-go scenario. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 9. Normalized statistical performance metrics comparison 

Table 1. Statistical comparison of following distance performance. 

Metric Case 1 Value Case 2 Value 

Mean Actual Following Distance (m) 34.94 29.94 

Mean ISO Safe Distance (m) 34.81 29.81 

Maximum Deviation from Safe Distance (m) 2.27 8.00 

Minimum Deviation from Safe Distance (m) -3.79 -1.24 

Standard Deviation of Distance Error (m) 0.61 0.98 
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By analyzing the chart, we can observe that the Mean Actual Following Distance and Mean ISO Safe 

Distance are nearly identical for both cases, confirming that the controller effectively tracks the 

reference safe distance. However, the higher Maximum Deviation in case 2 highlights the increased 

challenge of maintaining smooth transitions in speed and spacing during acceleration phases. The 

Standard Deviation of Distance Error, although slightly higher in case 2, remains within an acceptable 

range, indicating that the controller successfully stabilizes the vehicle’s response over time. in 

maintaining a stable following distance in case 1, while demonstrating adaptability in case 2 under 

stop-and-go conditions. The significantly lower standard deviation in case 1 (0.61 m) confirms better 

stability, whereas the slightly higher deviation in case 2 (0.98 m) reflects the adjustments made during 

acceleration while still keeping the vehicle close to the desired safe distance. 

The statistical performance analysis reveals key differences between the two scenarios. case 1 

exhibited higher stability, with deviations tightly controlled around the ISO-defined safe distance, as 

evidenced by a standard deviation of distance error of 0.61 m. In contrast, case 2 showed slightly 

greater variability, with a standard deviation of 0.98 m, which, while higher, remained within an 

acceptable range. The ego vehicle in case 1 experienced minimal fluctuations, confirming smoother 

control actions with minor adjustments, whereas higher variability was observed in case 2, particularly 

during the acceleration phase, where speed variations reached ±10 km/h. Additionally, more outliers 

were present in case 2, suggesting that rapid adjustments were required initially to regulate 

acceleration and establish a stable following distance. Despite these initial fluctuations, the controller 

effectively minimized deviation over time. Overall, the two-level PID controller demonstrated 

effective performance in both cases. In case 1, the system maintained a stable following distance with 

minimal deviation, ensuring strong tracking ability under steady-speed conditions. In case 2, although 

the initial acceleration phase introduced larger variations, the controller successfully adjusted the 

following distance over time, demonstrating adaptability in dynamic driving conditions. Ultimately, 

the vehicle remained within acceptable limits, balancing safety, responsiveness, and smooth operation 

throughout both scenarios. 

4. Conclusion 

This study evaluated the performance of a two-level PID-based (ACC) system using high-fidelity 

simulations in CARLA. The analysis focused on two driving scenarios: case 1 (steady-speed 

following) and case 2 (stop-and-go traffic), examining the controller's ability to maintain a safe 

following distance while ensuring smooth vehicle operation. 

The results demonstrated that the ACC system successfully maintained stable and efficient control 

across both scenarios. case 1 exhibited higher stability, with minimal deviations from the ISO-defined 

safe following distance, confirming precise tracking and steady-state control. In contrast, case 2 

introduced more dynamic variations due to frequent acceleration and deceleration, yet the controller 

effectively adjusted to ensure safety and responsiveness. Statistical analysis highlighted the system's 

capability to regulate inter-vehicle spacing efficiently. The mean actual following distance closely 

matched the ISO safe distance in both cases, validating the controller's accuracy in maintaining 

appropriate gaps. While maximum deviation was higher in case 2, the standard deviation of distance 

error remained within an acceptable range, signifying effective disturbance handling. 

Despite its effectiveness, the proposed system has some areas for further refinement. The PID 

controller requires parameter tuning, which, while manageable, may involve some time to achieve 

optimal performance across different driving conditions. Additionally, the control system currently 

operates with fixed control parameters, and integrating adaptive or learning-based techniques in future 

work could further enhance its responsiveness in highly dynamic traffic scenarios. 

In conclusion, the two-level PID ACC system proved to be robust in diverse driving conditions. The 

system demonstrated strong stability in steady-speed driving and adaptability in dynamic stop-and-go 

scenarios, making it a viable approach for improving vehicle automation and safety. Future research 

could explore further refinements, such as integrating AI-based predictive control strategies to 

enhance adaptation to varying traffic behaviors and further optimize vehicle efficiency. 
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