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Abstract. Dispersion is a key aspect as for as unguided rockets are concerned. Whether it is 

desired (for large area coverage) or not (for higher localized impact), dispersion shoud 

however, initial (launch) dispersion are a major factor. These disturbances become more 

pronounced, more spohisticated, and harder to investigate in case of multiple launches. This 

study investigates the dynamic behavior of a wheeled rocket launcher equipped with vertically 

aligned launch tubes, analyzing the impact of successive rocket firings on the rockets’ initial 

disturbances influencing their dispersion. The launcher system is modeled as a multibody 

system using the transfer matrix method (TMM), allowing for a simple approach by bypassing 

the typical manipulation of sophisticated dynamic equations. This approach is validated by 

comparison with results obtained using Lagrange's equations proposed in the literature, 

ensuring model reliability and accuracy. The analysis includes a comprehensive examination of 

the dynamic interactions between the launcher canister and the vehicle chassis, providing 

insight into how different components of the system respond to the action of sequential firings. 

Findings underscore the importance of optimal selection and configuration of launcher 

components to mitigate negative impacts on vehicle stability and rocket dispersion.  

1. Introduction  

The Multiple Launch Rocket System (MLRS) is extensively utilized globally due to its numerous 

advantages and benefits [1]. An advantage of MLRS is its high firing rate, by sequentially launching a 

massive number of rockets in a short period. Rocket launchers including MLRS consist of various 

components as depicted in Figure 1, to be considered as multibody systems [2]. The dynamics of these 

launch systems have a significant impact on the rocket initial disturbance and hence its trajectory thus 

having a significant impact on the unguided rocket dispersion[3]. The launcher dynamics are greatly 

influenced by the time intervals between successive shots and the firing sequence in MLRS, which 

have a great effect on the initial disturbance of the rocket at the muzzle. It is important to understand 

the dynamic behavior of these launchers and determine the time interval between shots to maximize 

effectivness and passively control the resulting disturbances generated during rocket launches. 
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Figure 1. MLRS components. 

Several methods have been proposed for modeling rocket launch systems, particularly MLRS to 

understand its complex behavior. Newton-Euler method is a widely used technique in this field. The 

equations of motion for MLRS were derived by Cochran [4, 5] using the Newton-Euler method. A 

dynamic model was developed including two rigid bodies, namely the launcher and the rocket. 

Another study [6] was developed to simulate the dynamics of MLRS during successive launching of 

rockets. In other studies [7, 8], the authors employed the Newton-Euler method to simulate the 

dynamic behavior of MLRS, specifically aimed at designing a controller for the azimuth and elevation 

mechanisms. Another notable approach employed in the dynamic modeling of rocket launch systems 

is the Lagrange method  [9-11]. 

Rui et al [10, 11]. established a mathematical model of MLRS based on the Lagrange equation of 

motion in. The main objective for developing this model was to design a PID controller to control the 

orientation of the system components and maintain the launcher parts on target using the concept of 

torque control. Another study [12] employed the Lagrange method in modeling a wheeled rocket 

launcher, applying five generalized coordinates and five inertia components to study the dynamic 

behavior of the launcher and its components. The vehicle was modelled as half car model to simplify 

the model. 

Recently, Rui and his group developed TMM [13] and its modified version [14], which simplifies 

intricate computations and lowers computational costs, offer considerable benefits for the dynamic 

modeling of rocket launchers and MLRS. In [15] a dynamic model of MLRS was developed to design 

an active controller to regulate the launcher motion, and decrease the vibration of the launcher during 

firing. The model is composed of twenty four elements divided into rigid bodies, lumped masses, and 

elastic elements. A dynamical mathematical model of MLRS was developed in [16] to solve the 

problem of dynamic design of MLRS. The launcher included eighteen firing tubes mounted on the 

vehicle. The dynamic model of the launcher with the vehicle is composed of twenty-eight elements 

including rigid bodies and elastic elements. In [17] and [18] a dynamical mathematical model of 

MLRS was developed based on the new version of TMM for the same case study in [16]. The main 

purpose of this study was to investigate the dynamic behavior of MLRS as a multibody system and 

study the effect of launcher dynamics on rocket dispersion. The updated version of TMM was utilized 

in [19] to create a dynamic of the same launcher in [12]. A parametric research was performed to 

comprehend the dynamic characteristics of the launcher under operating conditions. 

In this study, a dynamic model of a simplified rocket launch system composed of five vertically 

arranged tubes mounted on a wheeled vehicle [12] is developed using TMM [14]. The overall transfer 

matrix is derived using the automatic deduction theorem [20].To confirm the validity of the model, 

comparisons are made with results from the literature [12] that utilized the Lagrange method. Multiple 

rocket launches with varying time intervals between successive shots are examined to study the effects 
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of the repeated launches on the linear and angular motion of the system components as well as the 

initial disturbances of the unguided rockets.  

2. Case study 

The single tube launcher mounted on a vehicle proposed in [12] serves as a case study for validation 

purposes. The half-car model [21] was employed to represent the vehicle, facilitating the analysis and 

understanding of the suspension system characteristics, as illustrated in Figure 2. Subsequently, the 

single tube launcher is replaced with a canister of five tubes as shown in Figure 3. 

 
Figure 2.Dynamic model of single tube launcher [12]. 

 
Figure 3. Canister of five tubes. 

Lagrange differential equation is employed in the proposed model [12] to develop the dynamical 

mathematical model of five generalized coordinates (𝑦2,𝑦5,𝑦𝑣,𝜑𝑣,𝜑𝐿)  and five inertia components 

(𝑚2,𝑚5,𝑚𝑣, 𝑚𝐿, 𝐼𝑣). F (t) is the generalized force describing the rocket excitation force on the 

launcher. For additional information regarding the parameters in Figure 2, please refer to [12]. The 

launcher is mounted on the vehicle by two elastic elements each one characterized by a damping and 

stiffness coefficient (𝑘10, 𝑘11,𝑐10, 𝑐11) with the values of 𝑘10 = 𝑘11 = 22 𝐾N/m and 𝑐10 = 𝑐11 =
20 𝐾N. s/m . The angle 𝛼0 represents the angle between the horizontal and the launcher. Some 

physical parameters of the vehicle and the launcher tubes with the rockets are presented in Table 1. 

The mass centers of the vehicle and the launcher are measured from the input point of each part.  The 
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parameters of each body are displayed in the respective body-fixed frame. The mass of the rocket 𝑚𝑅 

in the analysis is 66 kg and the thrust 𝐹𝑅 is 23600 N [22]. 

 

3. Mathematical model 

The modified version of TMM proposed in [14] is employed to establish the dynamic model of the 

vehicle launcher system. Figure 4 illustrates the topology diagram of the dynamic model. The system 

is classified into hinge elements and body elements. According to the topology diagram, the boxes 

refer to the body elements and the arrows refer to the hinge elements. The arrow direction indicates the 

transfer direction. The hinge element mass is negligible [17]. Every element of the system is 

designated a number from one to eleven. The whole front and rear axles are considered as lumped 

masses, assigned to numbers 2 and 5, respectively. The launcher and the vehicle chassis are considered 

rigid bodies, designated the numbers 9 and 7, respectively. The hinge elements have the numbers 1, 3, 

4, 6, 8, 10, 11. The number 0 represents the system boundaries.  

 
Figure 4. Model topology of the launcher vehicle system. 

3.1. State vector and transfer equation 

As the system moves in the plane, the state vector "Z" comprises seven elements as represented in 

equation (1). 

      𝑍 = [𝑥̈ 𝑦̈ 𝛺̇𝑧 𝑚𝑧 𝑞𝑥 𝑞𝑦 1]
𝑇
 (1) 

where 𝑥̈ and 𝑦̈ , are the linear accelerations related to 𝑞𝑥 and 𝑞𝑦, respectively. 𝛺̇𝑧 represents the 

angular acceleration corresponding to the torque  𝑚𝑧. Equation (2) represents the relation between the 

output and the input state vector and is denoted by the transfer equation of the entire element.   

  

𝑍𝑘,𝑂 = 𝑀𝐾𝑍𝑘,𝐼  (2) 

where 𝑀𝐾 is the element k transfer matrix and it is a 7x7 square matrix. The element k input and 

output state vectors are represented by 𝑍𝑘,𝐼 and  𝑍𝑘,𝑂 , respectively.       

3.2. Transfer matrices 

Elements 2 and 5 are treated as lumped masses with a single input and a single output. Element 9 is 

defined as a rigid body with a single input and a single output. The elements 2, 5, and 9 transfer 

Table 1. Some physical parameters of the system 

 

Front-

wheel 

Rear-

wheel 

Vehicle 

chassis 

launcher 

One tube Five tubes  

Mass, [kg] 755 1550 3600 80 426.1 

Mass center [m] (0,0) (0,0) (2.94,0) (0.82,0) (1.34,0.31) 

Moment of inertia, 𝐼𝑍𝑍, [kg.𝑚2] 0 0 60000 128 865 
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equations are the same as equation (2). Element 7 has two inputs and one output and its transfer 

equation is represented in equation (3). 

𝑍7,𝑂 = 𝑀7,𝐼1𝑍𝐼1 + 𝑀7,𝐼2𝑍𝐼2 (3) 

where, 𝑍𝐼1and 𝑍𝐼2are the two input state vectors of vehicle 7.  𝑀7,𝐼1is the rigid body transfer matrix and 

can be found in [14] and represented as, 

𝑀7,𝐼1 =

[
 
 
 
 

𝐼2 𝐶1 02×1 02×2 𝐶2

01×2 1 0 01×2 0
𝐶6𝐶3 + 𝐶7 𝐶6𝐶4 + 𝐶8 1 𝐶6 𝐶6𝐶5 + 𝐶9

𝐶3 𝐶4 02×1 𝐼2 𝐶5

01×2 0 0 01×2 1 ]
 
 
 
 

 (4) 

The moments and forces from the second input state vector 𝑍𝐼2are obtained by the extraction 

matrix[20]  𝑀7,𝐼2and represented as,  

𝑀7,𝐼2 =

[
 
 
 
 
02×2 02×1 02×1 02×2 02×1

𝑂1×2 0 0 𝑂1×2 0
𝑂1×2 0 1 𝑟𝐼2,𝑜 0

𝑂2×2 02×1 02×1 𝐼2 0
𝑂1×2 0 0 𝑂1×2 1 ]

 
 
 
 

 (5) 

In comparison to algebraic equations, equation (3) has more unknowns. Therefore the geometric 

equation (6) is employed. 

𝐻7,𝐼1𝑍𝐼1 = 𝐻7,𝐼2𝑍𝐼2 (6) 

where 𝐻7,𝐼1and 𝐻7,𝐼2 are depicted in references[17] and [20]. 

Simultaneously, elements 1, 3, 4, 6, and 8 are considered to be elastic and acceleration hinges in 

parallel [17]. Utilizing the elastic hinge allows for the modeling of the damping and elastic forces that 

exist between two bodies [14]. The acceleration hinge does not link the two bodies; rather, it serves to 

facilitate the transfer equation and is illustrated in equation (7). 

𝑀acceleration hinge = [
03×3 −𝑠̂1

−1𝑠̂2 −𝑠̂1
−1𝑠̂3

03×3 𝐼3 03×1

01×3 01×3 1
] (7) 

3.3. The system overall transfer matrix equation 

Given the system topology and the automatic deduction theory [20], the system transfer equation is as 

follows 

𝑴𝒂𝒍𝒍𝒁𝐚𝐥𝐥 = 𝟎 (8) 

where, 

𝑴𝒂𝒍𝒍 = [
−𝑰𝟕 𝑹𝟏−𝟗 𝑹𝟒−𝟗

𝑶𝟒×𝟕 𝑸𝟏−𝟕 𝑸𝟒−𝟕
] (9) 

where, 

𝑅1−9 = 𝑀9𝑀8𝑀7,𝐼1𝑀3𝑀2𝑀1 

𝑅4−9 = 𝑀9𝑀8𝑀7,𝐼2𝑀6𝑀5𝑀4 

𝑄1−7 = −𝐻7,𝐼1𝑀3𝑀2𝑀1 

𝑄4−7 = 𝐻7,𝐼2𝑀6𝑀5𝑀4 

(10) 

𝑍all is the vector comprised of the boundary state vectors and shown in equation (11). 

𝑍all = [𝑍9,0
𝑇 𝑍1,0

𝑇 𝑍4,0
𝑇 ] (11) 

The boundary condition of the vehicle launcher system is illustrated as, 

 𝑍9,0 = [𝑥̈ 𝑦̈ 𝛺̇𝑧     0 0     0 1]𝑇
9
 

                        𝑍1,0 = [0 0 0     𝑚𝑧 𝑞𝑥      𝑞𝑦 1]𝑇
1
 (12) 
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     𝑍4,0 = [0 0 0     𝑚𝑧 𝑞𝑥     𝑞𝑦 1]𝑇
4
 

The boundary state vector unknown variables can be determined by inserting the specified boundary 

condition into equations (11) and (8), subsequently eliminating the identified boundary 

variables.yields: 

𝑀̅𝑎𝑙𝑙𝑍̅all = 0 (13) 

𝑍̅all denotes the reduced overall state vector after the exclusion of identified boundary variables, 

whereas 𝑀̅𝑎𝑙𝑙 signifies the reduced overall matrix. Equation (2) can be used to obtain the entire state 

vectors of the system. 

3.4. Rocket acceleration and loads 

During the launch process, the acceleration of the rocket and the normal reaction that the rocket exerts 

on the tube are both defined by equations (14) and (15), respectively. 

𝑚𝑅𝑥̈𝑅 = 𝐹𝑅 − 𝑁(𝑠𝑖𝑛 𝛼 + 𝑓 𝑐𝑜𝑠 𝛼) (14) 

𝑁 =
𝐼𝑅𝐹𝑅 tan𝛼

𝑚𝑅𝑟2
 (15) 

where, N is the reaction normal to the tube, 𝛼 is the helix angle of the tube, 𝑥̈𝑅 is the acceleration of 

the rocket during its motion in the tube, 𝐼𝑅 is the mass moment of inertia of the rocket, r is the radius 

of the rocket, and 𝑓 is the coefficient of friction between the rocket and tube. The following equation 

can be used to determine the influence of rocket dynamics on the launching tubes. 

 𝐹𝑑 = 𝑚𝑅𝑔(1 + 𝐾𝑑) (16) 

where, 𝐾𝑑 is the dynamic coefficient, represents the influence of dynamic loads applied to the 

launcher, with its value ranging between 2 and 3 based on practical experiences. 

4. Discussion of Numerical simulation results 

The numerical simulation is conducted in this section to analyze the dynamics of the proposed vehicle 

launcher system. At the beginning of the simulation, the initial conditions are established as 

follows: 𝑦𝑣 = 𝑦2 = 𝑦5  = 𝜑𝐿 = 𝜑𝑣 = 0 where 𝜑𝑣  and 𝜑𝐿 are the angular displacements of the vehicle 

and the launcher, respectively. The simulation time step is .01 s. First, the simulation is conducted 

when a force pulse is applied to the single tube launcher for a duration of 0.05 s to validate the model. 

Then the simulation is extended to examine the effect of multiple launches on system parts and initial 

disturbances of the unguided rockets 

4.1. Model validation 

The comparison of the angular displacement of the vehicle and launcher at  𝛼0 = 30° between the 

proposed design and the reference model [12], which utilized the Lagrange equation, is depicted in 

Figure 5. The results from both methods exhibit a significant level of agreement. 

  
(a) launcher (b) vehicle chassis 

Figure 5. The launcher and vehicle angular displacement. 
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It is observed that the launcher angular displacement drops to -.065 rad abruptly and then takes 

more than 2 seconds to return to its initial position. This behavior will impact subsequent launches in a 

multiple-launch scenario and will be studied in the following subsections. 

4.2. Effect of multiple-launch on the dynamics of the system parts 

In this section, the simulation extended to include firing a series of five rockets from tube one to tube 

five with a time delay between shots ts=1s at  𝛼0 = 30°.Figure 6 and Figure 7 illustrate the angular 

displacements and velocities of both the launcher and the vehicle. Figure 6 shows that the launcher 

angular velocity initially oscillates by a small amplitude that increases during successive launches, 

reaching a maximum angular displacement of 𝜑𝐿 = −0.065 rad at the fifth shot. This indicates that 

the launcher vertical disturbance extensively increases as the vertical distance between the launch 

tubes (9) and the elevating mechanism trunnion (8) increases, causing the moment generated by the 

rocket motion through the launch tubes to increase. For the vehicle chassis (7), Figure 7 shows the 

vehicle angular velocity increases with each shot, reaching the peak after the fifth shot and the drop in 

angular displacement 𝜑𝑣 increases after each shot, peaking with the fifth shot. Figure 8 visually 

depicts the vertical linear displacements and velocity of the vehicle body mass center, whereas Figure 

9 especially focuses on the vertical linear displacements and velocities of element 2 and element 5.  

  

(a) 𝜑L (b)   L 

Figure 6. Angular displacement and velocity of the launcher. 

 

  

(a) 𝜑𝑣 (b)  v 

Figure 7. Angular displacement and velocity of the vehicle. 
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(a) vertical displacement (b)   velocity 

Figure 8. Vertical displacement and velocity of vehicle mass center. 

  
(a) vertical displacement (b) velocity 

Figure 9. Vertical displacement and velocity of elements 2 and 5. 

4.3. Effect of multiple launches on the initial parameters of unguided rocket 

This section extends the simulation to examine the effects of multiple launches on the muzzle angular 

velocities and angular displacements of the rockets. A series of five rockets is fired varying three time 

delay between shots (ts) at α0 = 30°. Table 2 shows the muzzle parameters of the launcher (𝜑𝐿and 

 L) that affect the unguided rocket trajectory and dispersion  when ts=.4, .8, and 1.2 s. The average 

muzzle 𝜑𝐿 reduces as 𝑡𝑠 increases, along with the standard deviation (STD) of muzzle 𝜑𝐿and muzzle 
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Table 2.Muzzle parameters of the rocket 

𝑡𝑠[s] parameter shot1 shot2 shot3 shot4 shot5 Average STD 

0.4 
𝜑𝐿[rad] -.026 -.052 -.073 -.090 -0.1 -0.069 0.03 

 L [rad/s] -.23 -.186 -.138 -.0935 -.094 -.148 .059 

         

0.8 
𝜑𝐿[rad] -0.026 -0.044 -0.056 -0.065 -0.072 -0.0530 0.018 

 L [rad/s] -0.23 -.195 -0.15 -0.119 -0.125 -.165 .047 

         

1.2 
𝜑𝐿[rad] -0.026 -0.039 -0.047 -0.05 -.0601 -0.04 0.011 

 L [rad/s] -0.230 -0.200 -0.16 -0.130 -0.137 -0.17 0.037 
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5. Conclusion 

Initial (launch) disturbances of MLRS have impact on dispersion of unguided rockets. This study 

provides a brief analysis of the dynamics of a multi-tube rocket launcher mounted on a wheeled 

vehicle. A mathematical dynamical model of the launcher vehicle system is established using the 

Transfer Matrix Method (TMM). This method facilitates modeling of the complex systems by 

eliminating the need to derive the overall dynamic equations.  The findings demonstrate that multiple 

rocket launches notably influence various components of the system, with a pronounced effect on the 

angular motion of the elevating mechanism. This has a direct consequence on the muzzle parameters 

of unguided rockets, affecting their trajectory and consequently dispersion. Future studies could 

extend this research by evaluating additional launch scenarios and incorporating environmental 

variables to enhance the understanding of artillery system dynamics and further optimize launcher 

performance. 
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