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Abstract. Autonomous vehicles have been a research trend over the past two decades, and both 

industrial and academic institutions have exerted considerable effort to achieve the highest level 

of autonomy. All these efforts have resulted in the use of deep reinforcement learning for 

autonomous driving and autonomous vehicles, as it provides great flexibility in achieving 

autonomy, especially in end-to-end control. One challenge when using deep reinforcement 

learning for end-to-end control of autonomous vehicles is the reward function design, which is 

the basis on which the behaviour of the vehicle is designed. Many efforts have been made by 

researchers and engineers to achieve an ideal reward function design, but to the best of our 

knowledge, this has still not been achieved. Reward function design has many challenges, one 

of which is the missing attributes that pose a great deal for end users, such as comfort. This study 

presents a novel reward function specifically designed to enhance ride comfort in autonomous 

vehicles. The proposed design process surpasses other methods by prioritizing passenger comfort 

as a core objective. The efficacy of the proposed reward function is demonstrated by the 

increased total accumulated rewards per episode and the acceleration profiles proved by a 

44.34% reduction compared to the baseline model. 

1.  Introduction 

Research has been dedicated to autonomous systems over the past decade owing to the evolution of 

science and technology. An autonomous system is an intelligent system that incorporates vision and 

planning to achieve its goals. Decision-making for autonomous systems has become an increasingly 

interesting field of research, and in this study, planning and decision-making are used interchangeably. 

According to Dimensions.ai [1], the number of publications on the topic up to this year increased by 

four times the number of publications in 2013. Thus, the planning and control of autonomous vehicles 

have been thoroughly researched. Two main approaches are studied: sequential decision making and 

end-to-end decision making. Because end-to-end decision-making is favored in literature, several 

methodologies have been proposed, one of which is Deep Reinforcement Learning (DRL). Recently, 

DRL is used in end-to-end learning because it offers greater flexibility and autonomy. However, 

challenges arise when utilizing DRL for autonomous driving, such as reward function design, which can 

be regarded as a feedback signal for the system. Thus, numerous aspects must be considered. In the 

literature, there are many challenges in reward function design, such as incomplete problem description, 

missing attributes, redundant attributes, and inefficient reward shaping [2]. The remainder of this paper 
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explains the use of DRL for autonomous vehicle control. A novel reward function design with a 

complete problem description that addresses missing attributes such as ride comfort is proposed. The 

remainder of this paper is organized as follows: Section 2 presents the related research works, Section 

3 discusses the methodology, Section 4 shows the results' analysis and Section 5 concludes the presented 

research. 

2.  Related Works 

This section discusses the literature background, starting with autonomous vehicles and ride comfort, 

then DRL for autonomous vehicles as per recent research on decision making for autonomous systems, 

and challenges in DRL for autonomous vehicles.  

2.1.  Autonomous Vehicles and Ride Comfort 

An autonomous vehicle (AV) is an intelligent system that can perceive its environment and observe, 

decide, and take actions based on feedback from the environment. There are two main software 

architectures for AVs: sequential and end-to-end (E2E). The authors of [3] stated the present approaches 

for planning and decision-making for autonomous vehicles and classified these approaches as sequential 

planning, behavior-aware planning, and end-to-end planning, behavior-aware planning can also be 

considered a form end-to-end planning, the authors claimed that integrating the perception and planning 

systems of an autonomous vehicle achieves better performance and accuracy. In [4], the authors stated 

that there are several methodologies for sequential planning but only learning-based approaches are 

suitable for end-to-end planning to introduce adaptability. Moreover, [5]  argued that integrating 

perception data with planning and control to create an end-to-end planning architecture offers more 

simplicity in the system design and adds flexibility and adaptability to the AV. Sensor data collection, 

perception, planning, and control were implemented based on the software architecture of the AV. 

Autonomous systems have four main modules: sensing, perception, planning, decision-making, and 

control. As shown in Figure 1, the AV collects sensor data and observations from the environment, then 

processes this information and forms an understanding of the environment and then makes decisions 

based on its understanding of the environment and sends signals to the control module to act. Figure 2 

shows the differences between sequential and end-to-end planning. 

 
Figure 1. Autonomous Vehicles Flow 

Upon surveying the literature on end-to-end methods, it was found that learning-based methods were 

the most common in realizing this approach; deep learning, imitation learning, and Reinforcement 

Learning (RL) are the most common. Each method has its advantages and disadvantages however 

this paper tackles the DRL approaches. [6] proposed an RL model with a generative adversarial 

network (GAN) to convert non-realistic virtual input images to a realistic one with a similar scene 

structure to bridge the gap between simulation and reality because an RL model cannot be trained in 

real life. Furthermore, [7] proposed a novel framework of RL with an image semantic segmentation 

network to narrow the gap between simulation and reality. In [8], new reward and learning strategies 

were presented and together they resulted in faster convergence using only RGB image from a front 

facing camera. The authors in [9] used the A3C framework proposed to learn the car control in a 

stochastic rally game. Finally, the authors in [10] presented an end-to-end model with a hybrid of 

imitation-reinforcement learning architecture. 
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Figure 2. Sequential vs. E2E Planning Approaches 

Despite the evolution of technical methodologies in the automotive domain, such as ADAS and other 

technologies, passenger experience has not been considered thoroughly, which has immense 

potential in introducing AVs to the market. Research on AVs has been increasing, but still with no 

regard to passenger ride comfort. Ride comfort can describe a several aspects of a ride, and according 

to [11], there are distinct factors affecting passenger experience and ride comfort: controllability 

factors, robotic control factors and environmental factors. Controllability factors include motion 

sickness, naturality of paths, and appearance of surfaces, robotic control factors include apparent 

safety, disturbances, and vibrations while environmental factors include air quality, temperature, 

sound and noise, road condition and light condition. Furthermore, [12] illustrates the factors affecting 

human comfort in AVs and categorizes the factors as the factors affecting ride comfort in 

conventional vehicles such as air quality, sound and noise, temperature, and vibrations, and factors 

affecting AVs such as naturality, disturbances, apparent safety, and motion sickness. Disturbances 

are not specified to a certain source but are thought to be caused by jerks, rough maneuvers, high 

acceleration or deceleration, or high steering angles. Multiple studies have discussed motion sickness 

factor such as [11,12], others discussed the design of the suspension system to optimize ride comfort 

such as [13]. Another study discussed the motion optimization for comfort that utilized DRL for 

suspension control at planned speeds[14]. In addition, [15] proposed an RL based vibrations control 

for the semi-active suspension system.  

 

All the above-mentioned studies pointed out the mechanical vibration level as a factor affecting ride 

comfort, but little research has been conducted on this topic. Hence, the study of ride comfort is a 

new field of research. To study the ride comfort of a passenger, one must first know how to evaluate 

the comfort level and then start working with the data. According to [16] there are three types of 

assessments of ride comfort: subjective assessment, objective assessment, and mathematical models. 

Subjective assessment relies on the verbal feedback of passengers during a ride, and objective 

assessment uses sensors or devices to quantify comfort, while mathematical models use 

physiological and biomechanical parameters to predict the level of comfort based on the data. The 

need for comfort level evaluation to be simulation-based or objective was stated by [17], in which 

the number of physical prototypes is reduced significantly if virtualization is achieved for key design 

parameters and full vehicle configurations, even in the early stages of development which is 

originally stated in [18], and ride comfort is for sure one of the key design parameters as is it a 

foundational part of the passenger experience in AVs. Most ride comfort studies are based on public 

transportation [19], the authors classified sixteen papers, seven of which were AVs. Thus, the paper’s 

main interest was only in AVs, and only one of these seven utilized machine learning. All the 

methods introduced in these papers only predict the vibration level, but do not prevent or reduce it. 

Studies were conducted to find the factors affecting ride discomfort, one of which is [20], the authors 

concluded their study with 3 key observations:  Discomfort is directly proportional to the acceleration 
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magnitude which makes it the most important factor in predicting discomfort, The effect of jerks 

seems to be negative which means that higher jerks are associated with lower levels of discomfort 

and direction affects discomfort, which means that forward motion comes first in the levels of 

comfort, backward motion comes second and lastly lateral motion which is the most uncomfortable. 

Authors in [16] introduced a novel model that represents a vehicle passenger by including all body 

parts which were not given enough attention in previous research. In their design of the model, they 

stated that vertical acceleration is the most important factor in ride discomfort, as it directly affects 

the human spine. 

2.2.  Deep Reinforcement Learning for Autonomous Vehicles 

2.2.1.  Theoretical Foundations 

Over the last decade, RL has become a key technology for improving the autonomy of autonomous 

systems, including robots and autonomous vehicles. RL is learning by experience in which an agent 

learns by interacting with an environment and receiving feedback in the form of rewards, so it 

surpasses the performance of supervised learning in autonomous driving or robotics because supervised 

learning does not learn the dynamics of the environment or the agent [21] [22]. To better understand 

RL, the key components of an RL model are first explained. 
1. Agent: also known in the engineering community as the controller, an agent in RL is the 

decision maker, and it is the software embedded in the system. 

2. Environment: also known in the engineering community as the controlled system, is 

everything that surrounds the agent and everything that the agent interacts with. 

3. Reward Function, also known as the control signal in the engineering community, can be 

considered as the feedback signal that the agent receives after taking a certain action to 

evaluate its performance or the goal of the reinforcement agent. 

4. Policy: This is the behaviour that the agent is trying to learn to achieve optimal performance 

or the mapping from states to actions. 

5. Value: accumulated rewards over time. 

Deep Learning (DL) is utilized for end-to-end learning, planning tasks, and perception. Given the 

inputs and outputs, DL learns to predict the mapping between both and then generalizes to unseen 

data. In autonomous driving, one of the DL limitations is that it requires labeled data that may not 

always be available. This limitation can be overcome by DRL, which is discussed in the next section. 

2.2.2.  Deep Reinforcement Learning 

DRL is a combination of DL and RL, using a neural network as a approximation function for the RL 

model, which then creates the working principle of DRL, as shown in Figure 3 below: 

 

 
Figure 3. Deep Reinforcement Learning Cycle 

DRL algorithms are classified into value-based, policy-based and actor-critics [22], value-based works 

by estimating the values of each state or of each action without having a defined policy, while policy-

based works by learning the policy directly as it learns state-action pairs. Actor critics combine both 
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value-based and policy-based methods in which the agent (the actor or policy-based) learns a policy and 

the critic (value-based) evaluates it by giving back feedback to the actor in the form of values. This is 

the most complex type of DRL algorithm and is well suited for complex environments and complex 

tasks. There are variations of this algorithm, some of the most recent actor-critical algorithms are Deep 

Deterministic Policy Gradient (DDPG) [23], Policy Proximal Optimization (PPO) [24], Soft Actor-

Critic (SAC) [25], Asynchronous Advantage Actor-Critic algorithm (A3C) [9] and Synchronous 

Advantage Actor-Critic algorithm (A2C) [9]. DRL algorithms can be further classified based on 

environment type. In [26], the authors classified the DRL algorithms based on the environment type, 

first they classified the environment into continuous and discrete, in the discrete environment discrete 

actions can be taken, and in the continuous environment, both discrete and continuous actions can be 

taken. The estimation of continuous actions does not depend on the action’s probability, but on the 

action’s statistics. Therefore, actions must be sampled from a continuous range, which may be a multi-

variate or uni-variate Gaussian distribution. Value-based can only work in discrete environments, 

policy-based can work in continuous environments, and actor-critic can work in both discrete and 

continuous environments.  

2.3.  Challenges in Deep Reinforcement Learning for Autonomous Vehicles 

 

Reviewing the research on decision making for autonomous systems, the challenges that still stand after 

all the proposed technologies, experiments, and research can be pointed out. In this section, the 

challenges faced when implementing a decision-making system for autonomous vehicles using DRL are 

discussed.  

2.3.1.  Simulator-to-Reality Gap: Considering the nature of RL, learning by trial and error, it can be 

extremely expensive and dangerous to train an agent in real life because it can expose the humans 

involved and other vehicles/agents to great dangers. Consequently, the performance of an RL agent in 

real life varies drastically from its performance in a simulator. Many researchers mentioned this 

challenge in their papers, including [27] and [21]. Approaches to overcome this challenge will be 

discussed in the next section. 

2.3.2.  Generalization: Each RL agent can be defined for a single objective or multiple objectives, as 

discussed in this chapter. This makes the ability of an agent to generalize to other environments non-

existent. In other words, an agent trained for a specific objective or set of objectives cannot maintain the 

same performance in other tasks. Which makes it very computationally expensive to start from scratch 

and train an agent from scratch each time for a new objective or task [3] [5] 

2.3.3.  Verification: As mentioned above, it is impractical to train an RL agent in real life because of its 

nature; therefore, its verification and validation have become a challenge as well. How can an RL agent 

be verified if it cannot be tested in real life? This question remains a challenge [9], [27] 

2.3.4.  Safety: It is extremely important for decision making systems to provide safe driving [3] [5] [27], 

[21] but there is no safety standard in the literature for researchers to abide by [2,28] 

2.3.5.  Reward Function Design: Reward function is a crucial element in RL and shaping it can be an 

indicator of whether the agent will learn properly. Reward shaping can make learning faster because it 

gives hints to the agent about the desired state that will lead to the actual reward, which are pseudo-

rewards that the agent is rewarded when it makes any progress. 

2.3.6.  Multi-Agent Reinforcement Learning: Multiple RL-based agents communicate with each other 

to obtain an optimal policy for each. 
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2.3.7.  End-to-End Learning: End-to-end learning models are a challenge in the decision-making and 

control of autonomous systems. 

2.4.  Reward Function Design 

Reward function design is a challenging area of research, as there are no standards or rules to ensure an 

effective and reliable design. However, researchers and engineers worked on this topic to facilitate the 

design process through conducting research on the topic. In [28] the authors reviewed all aspects of 

designing a reward function for autonomous vehicles and autonomous driving. In [2] the authors 

discussed the mistakes performed in the literature that affects the design and the resulted behaviour of 

the vehicle. For that matter, they proposed eight sanity checks to be considered when designing a reward 

function for autonomous vehicles or autonomous driving. Their sanity checks were used to evaluate the 

proposed design process. Reward function in autonomous driving should address several key aspects of 

driving like safety, comfort, progress to destination, fuel consumption, time spent driving, distance 

covered, …, etc. However, some attributes are not addressed enough as mentioned in [2] such as 

comfort. It was noted that many studies disregarded comfort in their work such as [6,7,9,29–32]. As far 

as our knowledge, no research addressed comfort completely until now. Comfort in literature is all 

passenger focused but since the number of passengers can differ throughout a single ride, the best way 

to evaluate comfort according to the literature is acceleration and its derivative, jerk [28]. Comfort or 

passenger experience can be improved using numerous ways, one of which is steering smoothness as it 

is used in[33–36]. Some studies [34,35] addresses steering smoothness by penalizing high steering 

angles. Ride comfort falls under the missing attributes problem of the reward function design, so comfort 

is taken into consideration by improving both acceleration and steering smoothness. 

3.  Methodology 

Ride comfort optimization using DRL is based on the reward function design. As discussed in the 

previous section, reward function design is crucial for an agent’s success, but it has many challenges to 

be designed properly. One of which is the problem description and the goal behind the design. However, 

autonomous driving being a multi-objective problem, certain goals cannot be specified or quantified. 

Only general goals can be to achieve and ensure safe and efficient driving. The first step in designing 

the reward function is to have a complete and clear problem description, but since the problem is 

autonomous driving, the agent cannot be expected to learn to drive as a human does. Thus, the expected 

behaviour is specified for a self-driving car set by end-users/consumers as stakeholders for which 

comfort is a priority and in this is study, comfort is the main parameter to be studied. The process can 

be explained using the pseudo code below: 

 

Algorithm (1): Autonomous Vehicle Agent 

Initialize environment, global actor, and critic networks weights 𝜃 𝑎𝑛𝑑 𝜃𝑣 

Define number of maximum episodes (E) and number of workers (W) 

Initialize local actor and critic networks weights 𝜃′𝑎𝑛𝑑 𝜃𝑣
′  

Synchronise local actor and critic weights with global actor and critic 𝜃 = 𝜃′ and 𝜃𝑣 = 𝜃𝑣
′  

For x in number of workers (W): 

While #episode < max episodes: 

Get Initial State (𝑠𝑡) 

Get mean (𝜇) & Standard Deviation (𝜎) from Local Actor Network 

Sample action using mean (𝜇) & Standard Deviation (𝜎) ⟹ 𝑎𝑡 

Take action 𝑎𝑡 

For y number of states: 

Local Critic Network Value Prediction 𝑉(𝑠𝑡) 

Calculate TD Targets 𝐺𝑡 = 𝑟𝑡 + 𝛾𝑟𝑡+1 + 𝛾2𝑟𝑡+2 + ⋯ + 𝛾𝑛𝑉(𝑠𝑡+𝑛) 

Calculate the reward R and new state 𝒔𝒕+𝟏 
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Calculate Advantages 𝐴(𝑠𝑡 , 𝑎𝑡) = 𝐺𝑡 − 𝑉(𝑠𝑡) 

Update Global actor  𝑑𝜃 +  𝛻𝜃′  𝑙𝑜𝑔 𝜋(𝑎𝑡|𝑠𝑡;  𝜃′ )(𝑅 −  𝑉 (𝑠𝑡; 𝜃𝑣
′ )) 

Update Global Critic 
𝑑𝜃𝑣 + 𝜕 (𝑅 − 𝑉 (𝑠𝑡; 𝜃𝑣

′))
2

 

𝜕𝜃𝑣
′  

Perform asynchronous update of global networks weights with local 

networks: 𝜃 using 𝑑𝜃 and of 𝜃𝑣 using 𝑑𝜃𝑣 

 

3.1.  Environmental Setup 

Setting up the environment for training the agent requires first selecting the simulator as this study is 

simulation-based. When designing an agent for autonomous driving, CARLA [37] is selected as the 

simulator and then came the selection of the Town in which the vehicle will drive. The authors of [37] 

used Town 01 for their evaluation of the RL algorithms, this is considered the benchmark for evaluating 

RL algorithms in CARLA, thus it was used. The simulation is done on CARLA simulator using Town 

01 which is characterized by being a small, simple town with rivers and bridges. Next came the sensors 

setup, the input to the algorithm is an RGB image so an RGB camera was installed on the vehicle, an 

IMU sensor was installed to measure the acceleration in all directions and a collision sensor was installed 

to detect collisions. 

3.2.  Algorithm Selection and Neural Networks Architecture 

As per the problem specification, the environment is continuous, stochastic, sequential, multi-agent, 

dynamic, and partially observable. The problem is multi-objective, driving in general is a multi-objective 

problem, but since the study is concerned with ride comfort, based on the survey done in Section 2.2 the 

algorithms to select from were PPO, DDPG and A3C, since the problem does not depend mainly on the 

algorithm, all three were good to use but A3C offers faster training and convergence in comparison to 

the other two in addition to its being the algorithm used by the authors of [37], so A3C is selected, Since 

continuous control is opted for so the actor network had to output both the mean and standard deviation. 

A3C works by creating parallel actors at the same time to replace having a memory like other algorithms, 

each actor updates the critic asynchronously which makes the agent have access to more than one state 

at a time. These asynchronous update works collectively to decrease the total training losses. 

3.3.  Reward Function Design 

The reward function design needed for the proposed goals presented many challenges since the problem 

is multi-objective function for comfort optimization. The numerous factors affecting the passenger 

experience in the literature are studied first, and they were the acceleration, the steering smoothness, and 

jerks. The ISO2631-1 [38] standard is selected for the vertical acceleration to be within the comfortable 

and the slightly uncomfortable values stated in [38]. The proposed reward function aims to keep a 

smooth ride and ensures comfort, noting that incorporating multiple factors for ride comfort does not 

fall under the problem of redundant attributes mentioned in [2] as each factors contributes to the overall 

passenger experience, such that steering smoothness contributes to the lateral movement and maneuver, 

acceleration contributes to the longitudinal movement, jerks contributes to both lateral and longitudinal 

movements, and vertical acceleration influences the vibrations affecting the human spine which directly 

affects the human experience. Furthermore, applying arbitrary weights to the reward terms can introduce 

bias without a justification; hence, it was not used as this approach ensures that all factors are of equal 

importance and will contribute equally to a balanced optimization process and a step further to insist 

that each factor plays a distinct role in optimizing the ride comfort. Thus, the final reward term for ride 

comfort optimization is as follows: 

 

𝑅 = −(𝑎𝑣𝑒𝑟𝑡𝑖𝑐𝑎𝑙 + 𝐽𝑙𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑖𝑛𝑎𝑙 + 𝐽𝑙𝑎𝑡𝑒𝑟𝑎𝑙 + 𝑆𝑠𝑡𝑒𝑒𝑟𝑖𝑛𝑔)  (1) 
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Where:   𝑎𝑣𝑒𝑟𝑡𝑖𝑐𝑎𝑙 is the vertical acceleration penalty, 𝐽𝑙𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑖𝑛𝑎𝑙 is the longitudinal jerk penalty, 

𝐽𝑙𝑎𝑡𝑒𝑟𝑎𝑙 is the lateral jerk penalty, and 𝑆𝑠𝑡𝑒𝑒𝑟𝑖𝑛𝑔 is the steering smoothness penalty. Other rewards are 

shown in the table: 

 

Table 1. Proposed Reward Function 

Ref Reward 

Reward (1) [9] 𝑣 cos 𝛼 

Reward (2) [6,7] 𝑣 cos 𝛼 − 𝑑 

Ours −(𝑎𝑣𝑒𝑟𝑡𝑖𝑐𝑎𝑙 + 𝐽𝑙𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑖𝑛𝑎𝑙 +  𝐽𝑙𝑎𝑡𝑒𝑟𝑎𝑙 + 𝑆𝑠𝑡𝑒𝑒𝑟𝑖𝑛𝑔) 

 

3.4.  Model Training 

The A3C framework allows us to create multiple instances of the proposed agent. By creating multiple 

instances, the number of training episodes for the agents can be reduced, 20 actors were used, for 3000 

episodes and a 100-state update interval, The actor network is a Single Input Multiple Output (SIMO) 

Neural Network where the RGB image is passed as an input to the network, and it outputs a mean and 

a standard deviation. While the critic network is a Single Input Multiple Output (SISO) Neural network 

where it received the RGB image as an input and outputs the predicted value. Table 2 shows the problem 

setup. In Figure 4, n-Actors work together to asynchronously update the whole model. 
 

 

 
Figure 4. The Proposed Model Setup 

 

Each actor in the shown model setup (Figure 4) works as shown in figure 5. After each reaches 

terminal state or the update interval ends, the actor updates the global model by equation (2) and 

global critic is updated by equation (3). Global model is locked during updates to prevent two actors 

from updating at the same time. 

 

𝑑𝜃 +  𝛻𝜃′  𝑙𝑜𝑔 𝜋(𝑎𝑡|𝑠𝑡;  𝜃′ )(𝑅 −  𝑉 (𝑠𝑡; 𝜃𝑣
′ ))   (2) 

 

𝑑𝜃𝑣 + 𝜕 (𝑅 − 𝑉 (𝑠𝑡; 𝜃𝑣
′))

2
 

𝜕𝜃𝑣
′   (3) 
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Figure 5. Proposed Model Training Algorithm  

 

This makes our problem setup as follows: 

Table 2. Problem Setup 

Observations (States) RGB Image 

Environment CARLA Simulator (Town 01) 

Actions Continuous Action Space 

- Steering ∈ [−1, 1] 
- Braking ∈ [0, 1] 

- Throttling ∈ [0, 1] 
Rewards 𝑅 = −(𝑎𝑣𝑒𝑟𝑡𝑖𝑐𝑎𝑙 + 𝐽𝑙𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑖𝑛𝑎𝑙 +  𝐽𝑙𝑎𝑡𝑒𝑟𝑎𝑙 + 𝑆𝑠𝑡𝑒𝑒𝑟𝑖𝑛𝑔) 

 

4.  Results and Discussion 

The training of the A3C algorithm was done for 300k simulation steps but for the sake of visualization 

it was sampled, the results showed that the proposed reward function surpasses the other rewards, reward 

1 is the original paper [9] and reward 2 is [6,7]. In figure 7, The graph compares the rewards per episode, 

while 𝑅1 and 𝑅2 stabilize early around a reward value of 10, the proposed reward function achieves 

significantly higher rewards, starting near 10¹ and gradually decreasing but remaining in the 10 range 

even after 3000 episodes. This suggests that the proposed approach learns a more effective policy that 

consistently outperforms the baselines by several orders of magnitude. Additionally, the smooth and 

stable trend of the proposed approach indicates robustness, while 𝑅1 and 𝑅2 show little improvement 

over time. The logarithmic scale further emphasizes the vast gap in performance, demonstrating that the 

proposed approach is far superior in maximizing rewards. Overall, the consistency of the proposed 

reward function indicates a better performance than the other two reward function, but an interpretation 

in terms of acceleration is still needed to show how the ride comfort was optimized.  
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Figure 6. Reward Per Episode 

 

Figures 8 (a) and (b) compare the proposed reward function against 𝑅1 and 𝑅2,  clearly demonstrating 

that the proposed approach leads to significantly lower and more stable accelerations over the 

episodes. Both 𝑅1 and 𝑅2 exhibit high fluctuations, with sharp spikes indicating abrupt changes in 

acceleration. In contrast, the proposed approach consistently maintains lower and more controlled 

acceleration values, with significantly fewer peaks. This suggests that the proposed approach 

achieves a smoother driving profile, minimizing rapid acceleration variations that could negatively 

impact passenger comfort. The reduced variance in acceleration further highlights the robustness of 

the proposed approach, ensuring a more predictable and controlled driving experience. Since high 

accelerations contribute to discomfort, the proposed approach effectively optimizes ride quality by 

prioritizing stability while still achieving high rewards. This balance between maximizing 

performance and maintaining smooth acceleration makes the proposed approach a superior solution 

for autonomous vehicle control, significantly improving passenger experience. This shows that by 

sustaining low and steady acceleration levels with noticeably fewer and smaller spikes, the proposed 

approach performs better than both 𝑅1 and 𝑅2, achieving a 44.34% reduction and more consistent 

vertical acceleration. 

  

Figure 8 (a). Acceleration Data (Ours vs 𝑅1)  Figure 8 (b). Acceleration Data (Ours vs 𝑅2) 
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The two graphs in Figures 9 (a) and (b) compare vertical acceleration across episodes. The vertical 

acceleration metric is crucial in evaluating ride comfort, as lower and more stable values indicate a 

smoother driving experience. In both graphs, 𝑅1 and 𝑅2 exhibit highly fluctuating and often high 

vertical accelerations, which suggests significant oscillations and discomfort for passengers. In 

contrast, the proposed approach maintains significantly lower and more stable vertical acceleration 

levels throughout all episodes. The controlled acceleration profile of the proposed approach indicates 

better optimization in minimizing vibrations, which directly translates to a smoother and more 

comfortable ride. Furthermore, the reduction in extreme acceleration spikes demonstrates the 

effectiveness of the proposed approach in mitigating sudden disturbances. The consistency and 

stability seen in the proposed approach reinforce its superiority in optimizing ride comfort, making 

it a more effective solution for real-world autonomous driving applications. 

 

  
Figure 9 (a). Vertical Acceleration Data 

(Ours vs 𝑅1) 

Figure 9 (b). Vetircal Acceleration Data 

(Ours vs 𝑅2) 

 

The Fast Fourier Transform (FFT) is utilized to analyze vertical acceleration and gain deeper insight 

into the vehicle’s behavior, further validating the results. As shown in Figure 10, the amplitude 

gradually decreases as frequency increases, indicating a well-controlled acceleration profile. The 

critical 4–8 Hz range, marked by dashed lines, represents the frequency band where human 

sensitivity to vibrations is highest. The results show that while there is some signal energy within 

this range, amplitudes steadily decay, suggesting effective vibration damping and minimizing 

discomfort. The absence of sharp peaks indicates that no dominant frequency is excessively 

amplified, preventing resonance effects that could worsen ride quality. Furthermore, the higher-

frequency components above 8 Hz are significantly suppressed, reducing sudden, high-frequency 

jolts that might otherwise lead to discomfort. This suppression of high-frequency vibrations 

contributes to a smoother and more stable ride, as abrupt acceleration changes are minimized. The 

FFT analysis supports comfort optimization by showing that acceleration energy is primarily 

distributed in a controlled manner, avoiding excessive oscillations and ensuring a more predictable 

and comfortable ride experience. 
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Figure 10. FFT Analysis 

5.  Conclusion 

This paper proposes an end-to-end DRL model with a novel reward function specifically designed to 

optimize ride comfort by addressing key factors that uniquely impact the passenger experience. By 

carefully considering acceleration constraints and leveraging RL, the model effectively minimizes 

discomfort-inducing forces, ensuring a smoother ride. The experimental results demonstrate a 

significant improvement in overall acceleration, achieving a 44.34% reduction compared to the baseline 

model. Additionally, the proposed approach consistently maintains more stable vertical acceleration 

values across episodes, as evidenced by the comparative analysis against alternative reward designs. 

The reduced occurrence of high-magnitude acceleration spikes indicates improved control over vehicle 

dynamics, directly translating to enhanced ride quality. This stability is crucial where passenger comfort 

is a key factor in the adoption and trust of AVs. By systematically optimizing acceleration profiles, the 

proposed model contributes to a more seamless and reliable driving experience, highlighting the 

potential of DRL in refining autonomous vehicle control strategies. These findings highlight the 

effectiveness of the proposed reward function and set the foundation for future research into more 

advanced comfort-aware RL frameworks for intelligent transportation systems. 
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