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ABSTRACT 
 
Obtaining a closed form analytical formulation for complex mechanical structures such 
as turbine rotors with multiple blade assemblies can be very problematic. Building a 
prototype without optimizing the structural stress levels may result in unnecessary 
hardware costs. In this work, mathematical models for highest stress or lowest factor of 
safety on critical components of a small modular cross-flow hydro turbine rotor have 
been explored for various design options through a response surface analysis. The 
response surface model is obtained based on finite element analysis results following 
design of simulated experiments. Rotor design parameters have been investigated to 
optimize factor of safety on critical components without violating the specified weight 
limits. Box-Henken data tables have been used to obtain the response surface model. 
The attained response model yields the maximum stress and lowest factor of safety for 
critical rotor components for various combinations of design parameters. Verification 
runs indicate that response model successfully predicts factor of safety levels close to 
finite element calculations. 
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INTRODUCTION 

Around the world, only a small portion of the available energy in small rivers is utilized 
for electric power generation. Although the power regimes in such small rivers fluctuate 
a great deal, stored energy accounts for a considerable amount for the human use. The 
available energy can be in the form of a head (drop in elevation), or flow rate. The 
combination of these two factors will define the total hydraulic energy potential. 
Depending on the form of the hydro-energy available, different power turbine types are 
used to convert this hydraulic potential to electricity most efficiently. Commonly used 
hydro-turbines can be named as Pelton, Francis, Kaplan and cross-flow turbines. 
Cross-flow turbines are also known as Banki or Ossberger turbines. Figure 1 illustrates 
[1] suitable application ranges for various turbine types based on available head and 
flow rates. Cross-flow turbines are only suited for small power applications typically less 
than 1000 kW. 
 
A cross-flow turbine consists of a cylindrical water wheel with a horizontal shaft, 
composed of numerous radially and tangentially arranged blades. The ends of the 
blades are welded to disks, spaced equally in the axial direction. A cross sectional view 
of cross-flow turbine is illustrated in Fig. 2 [2]. Thus, the water energy is transferred to 
the rotor blades twice in a single cycle [3]. 
 
For years, cross-flow turbines did not attract any interest due to the small power range 
and relatively lower efficiency rates. Therefore, there is very limited published work on 
these turbines. Research is needed to increase efficiency of these turbines while 
decreasing their cost. In this work, cross-flow turbines are analyzed. Two well known 
optimization algorithms, Sequential Quadratic Programming (SQP) and Genetic 
Algorithms (GA), are applied. Stress distributions on critical rotor components are 
numerically obtained using Finite Element Analysis. Then a mathematical model of the 
stress distributions has been obtained through response surface analysis. Optimum 
design parameters for the highest factor or safety or the lowest stress levels on the 
critical rotor components are reported. 
 
Although it is difficult to find available literature for cross flow turbines and their rotor 
stress levels, there are works available for various other turbine types. A former work by 
Guoyi et. al. [4, 5] dealt with the inverse design optimization of hydraulic turbine runner 
blade geometry in Kaplan turbines. Dornberger et. al. [6] developed an optimization 
environment for multidisciplinary turbomachinery blade design. He proposed a 
framework for the parallel execution of the solver computations. Egartner and Schulz [7] 
developed a partially reduced SQP algorithm that makes way for an efficient parallel 
implementation of blade design optimization. Similarly, Schulz presented a work on 
cross sectional shape optimization of a turbine blade [8].  
 
In this work, rather than focusing only on the blade geometry, an optimization scheme 
has been outlined to determine critical components on the runner of a cross-flow 
turbine and to optimize the factor of safety on these components. The paper is 
structured as follows. First a brief explanation of modular cross-flow hydro turbine 
runner structure is given. Then, an objective function is derived with all constraints for 
the optimization problem. The results for the applied optimization algorithms are 
presented. The optimum design vector for the highest factor of safety on critical runner 
components is obtained. Finally, a discussion on the effectiveness of the applied 
optimization scheme has been presented. 
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CROSS-FLOW TURBINE RUNNER STRUCTURE 
 
As illustrated in Figures 2 through 4, a cross-flow turbine runner is made of multitude of 
blades. Tangential blades are mounted on radial support disks that are evenly spaced 
in runner axial direction. As each blade has to be secured on support disks, runner 
assembly requires a lot of welding work. A modular runner structure is needed to 
reduce custom design and fabrication time as well as to minimize required welding 
work. The focus of this paper is to develop and present a working optimization scheme 
for the runner stresses rather than the structural design details. A parallel effort is being 
undertaken to develop a modular cross-flow turbine design which introduces structural 
flexibility in the construction and installation periods. This work will be presented in 
another paper. 
 
 
OBJECTIVE FUNCTION 
 
Selection of design variables and the objective function for the turbine runner 
optimization should be implemented with care. At the preliminary stage, many design 
variables can be considered for the turbine runner construction. However, some typical 
values for most of these variables are commonly set to achieve the highest efficiency. 
In addition, some of these variables are interdependent. For example, optimum number 
of blades on a runner assembly depends on the runner size. Similarly, the radial blade 
spacing and blade thickness values are all determined in accordance with the rotor 
diameter. Likewise, blade entrance angle and length of the blade arc are all preset to 
maintain proper tangential contact between the water jet and blade entrance [3]. All of 
the preconditions are specified based on rough analysis to achieve the highest turbine 
efficiency. Hence, we decided to perform an optimization on the design variables of the 
cross flow turbine to minimize the stress distributions without affecting the overall 
turbine efficiency. However, a turbine runner has many elements manufactured from 
different materials. Therefore, a component with lower stress distribution does not 
always mean that the component is safe statically. Factor of safety analysis on a 
specific component is a better means to illustrate the endurance of the concerned 
component under the prescribed conditions. In brief, not taking into account any 
constraints, the objective function of our problem is to optimize the factor of safety on 
the critical components of the turbine runner. 
 
To specify design vector for the above-mentioned objective function, first, it is required 
to detect the turbine parameters consistent with the maximum efficiency conditions 
(Table 1). The parameter values in Table 1 are derived with respect to the flow 
conditions for a typical low power (less than 30 kW) cross-flow turbine. Therefore, 
without affecting the overall efficiency, we are left with three design variables which are 
disc thickness, disc spacing and shaft diameter (Fig. 4). 
 
Available hydraulic energy in the form of head and flow rate is transferred to the turbine 
runner while water jet runs through blades. Therefore, instead of head and flow rate, 
the water force acting on the blades is taken as a parameter in the analysis. The power 
of the water jet acting on the turbine runner can be presented as [9], 
 

)cos1)(( βω −−== VUUmTW shaftshaft &&                 (1) 
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where
:= shaft power
:= shaft torque

:= angular velocity of the runner
:= mass flow rate
:= linear velocity of the runner at the blades
:= water jet velocity
:= entrance angle of the water jet

 

The values of these parameters are illustrated in the master table (Table 1). In addition, 
shaft torque can be formulated as, 
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 impact force of the water jet

 radius of the runner
 

 

In order to take the worst case conditions in consideration maximum torque that might 
be applied on the turbine runner is selected as the driving torque through our analysis. 
Maximum torque on the turbine occurs when the turbine is stalled. No power is 
transferred to the runner shaft because of the fact that its angular velocity is zero. 
Similarly, maximum torque gives way to the existence of maximum force on the turbine 
blades owing to the proportional relationship with runner radius. By taking the velocity 
of runner (U) zero and enforcing the velocity of the water jet and water entrance angle 
according to maximum efficiency conditions (Table 1), the maximum torque applied on 
the turbine blades is calculated. Likewise, by introducing the runner radius, maximum 
force acting on the turbine blades is obtained for the selected operating conditions 
around 7500 N. For a conservative analysis this force is assumed to act only on a 
single blade along the runner. All of the analyses and optimization runs are based on 
this approach.  
 
In addition to the design parameters mentioned above, disk type, blade and shaft 
materials are also other important design factors. Disk and blades are manufactured 
from AISI 1023 Carbon Steel and the shaft is manufactured from annealed 4340 Alloy 
Steel. These two material characteristics are also added to the problem as additional 
parameters. 
 
As stated earlier, the optimization for factor of safety is aimed to be performed on the 
critical component of the turbine runner. A number of finite element analysis (FEA) 
simulations are conducted as part of a screening process to identify most critically 
loaded runner components under various operating conditions. Screening results 
pointed out that the most critical component on the runner is the disc attached to the 
short side of the shaft. 
 
In order to define the objective function of the optimization problem completely, some 
constraints should be enforced into the problem. A turbine design with thicker disc sand 
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blades or with larger shaft radius would result in the highest factor of safety. However, 
the output power to weight ratio of the turbine is also an important parameter for overall 
efficiency and cost. In other words, it is an important requirement for the turbine 
designer to minimize the runner weight as much as possible. Therefore, adding a 
weight constraint is necessary for proper handling of this optimization problem. Taking 
typical turbine design conditions into consideration, a turbine weight around 50 kg is a 
reasonable weight constraint. Also, three design variables, i.e. disc thickness, disc 
spacing and shaft diameter, have upper and lower bounds to keep the overall turbine 
design in feasible region (Table 2). Overall, the final objective of the optimization 
problem is defined as follows. Optimize the factor of safety on the disc at the short side 
of the runner according to static analysis results by optimizing the disc thickness, disc 
spacing and shaft diameter in the feasible region without exceeding the weight limits.  
 
Similarly, the formal problem statement can be summarized theoretically as, 

 
 

min(- ( ))
subject to:
( )  50 kg

along with the boundary conditions (mm):
2 8

58 174
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As it is noticed in the formal problem statement, the factor of safety optimization 
problem is modified into a minimization problem by taking the negative of the objective 
function. Moreover, the upper bound for the weight constraint is set as 50 kg. This 
boundary is not a strict boundary because of the fact that the weight requirement of the 
real turbine is not determined in specific values. 

 
 

APPLIED OPTIMIZATION ALGORITHMS and ANALYSIS RESULTS 
 
The objective function is a nonlinear function due to the fact that design variables (disk 
thickness, disc spacing and shaft diameter) have coupled effects on factor of safety 
(FOS) for each component in the runner. The optimization problem is further 
constrained by the weight restriction. Therefore, optimization algorithms which are 
capable of handling constrained nonlinear problems are required for solution.  
Sequential quadratic programming (SQP) for convex problems [10] and genetic 
algorithm [11], which is a special heuristic technique, are well known optimization 
algorithms for dealing with such nonlinear problems. 
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During optimization process each step requires a new finite element analysis (FEA) for 
the turbine runner. For example, in sequential quadratic programming technique, the 
search direction towards the optimum is updated in each step, and design variables are 
assigned to new values. To get the output of objective function in each step, running a 
new design scenario with the updated design variables is necessary. This is analogous 
to avoiding the task of manufacturing and assembling a new runner in each step and 
making experiments on the runner to get the stress output which is extremely long and 
costly process. Similarly, running finite element analysis for each set of design variables 
is also time consuming and requires powerful computational resources. Rather than 
running lengthy computer simulations, it is commonly preferred to utilize simplified 
transfer functions to conduct optimization process. Therefore, based on finite element 
analyses results response surface models [12] are generated and used for runner 
stress optimization process.  
 
Response surface models are multivariate polynomial models and typically arise in 
tdesign of experiments (DOE) [13], where they are used to determine a set of design 
variables that optimize a response. For multivariate optimization problems having a 
large set of design variables, a factorial experiment can be implemented to reduce the 
number of design variables. Most of the time, it becomes sufficient to determine which 
variables have a significant impact on the objective function. Then, a central composite 
design [14] or a Box-Behnken design [15] can be implemented to obtain a convex 
polynomial, which is an approximation at best. However, the ease of estimation and 
application of the model, even when little is known about the process, makes it a 
preferable choice among optimization techniques. 
 
Box-Behnken Design 
 
Box-Behnken designs are response surface designs that can fit a full quadratic model. 
Such designs use three level for each factor: one at the upper bound, one at the lower 
bound and one at the middle. Moreover, Box-Behnken designs are successful for fitting 
quadratic models when the number of design variables is relatively low which is suited 
to our problem which has only three design variables; disc thickness, disc spacing and 
shaft diameter.  
 
Figure 5 shows a Box-Behnken design for three factors [16], with the circled point 
appearing at the origin and possibly repeated for several runs. The replicated center 
point runs allow us to estimate the prediction variance more uniformly over the entire 
design space. 
 
For our factor of safety (FOS) optimization problem, we have 3 design variables which 
are suitable for implementing Box-Behnken design approach, as the number of design 
variables is relatively low. Box-Behnken data set (Table 3) for our problem has been 
formed using a commercially available computer code, JMP, which can perform simple 
and complex statistical analyses. Each runner component has been designed using 
commercially available computer code, Solidworks. Once 3-D solid models are 
generated, these files are imported into another commercially available analysis code, 
Cosmosworks, to perform detailed finite element analyses. The set values “0”, “-” and 
“+” in Table 3 stand for middle point, lower bound and upper bound, respectively for 
each design variable. Then stress and factor of safety values for the disc attached to 
the short side of the shaft are obtained, and corresponding weight values for the runner 
are presented in Table 3. All of the calculations are based on the static finite element 
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analysis results obtained from the Cosmosworks. The predicted values for the FOS and 
weight parameters are obtained from the optimization routine from JMP code that fits a 
convex second-degree polynomial function. The results are presented as the additional 
two columns in Table 3.  
 
Because stress and factor of safety results reflect solutions of analyses that are run on 
a finite element computer code rather than reflecting actual experimental 
measurements, repeating the analyses for the same variable set does not yield different 
results. Therefore, the design combination representing the center point is analyzed 
only once. Based on predicted values, the nonlinear quadratic objective and constraint 
functions have been obtained as follows. 
 
Weight = 

2 2 24.151 -.1676 0.02295 - 0.01625 - 0.00258 0.000105 - 0.00065 0.0039 0.0007 38.67a b c ab ac bc a c b+ + + + + (3) 
 
FOS= 

2 2 20.4614a+0.02948 0.1398 0.00029 0.01442 - 0.0002 - 0.09289 - 0.000465 - 0.000093 - 6.159b c ab ac bc a c b+ + + (4) 
 
where a, b and c stand for ‘disc thickness’, ‘disc spacing’ and ‘shaft diameter’, 
respectively. 
 
 
Sequential Quadratic Programming 
 
Sequential Quadratic Programming (SQP) is considered to be the best gradient based 
algorithm and widely used in many engineering applications [10]. SQP methods attempt 
to solve a nonlinear program by constructing and solving a local model of the 
optimization problem at each step. If the SQP method is not trapped by a local 
minimum, it yields the solution of the original problem. Since our optimization problem is 
a constrained nonlinear problem, as the first choice, we applied SQP method to get the 
optimum design vector for the highest factor of safety on the critical disc component. A 
sequential programming code has been generated implementing both constraint and 
objective functions. The code is a total reflection of the formal problem statement 
illustrated earlier in the objective function section. 
 
The starting design vector for the optimization problem is stated as follows. 
 

7 
: 75 

45 

i

i i

i

x1
x2
x3

     
     = = =     
         

x
initial disc thickness mm
initial disc spacing mm
initial shaft diameter mm

                                  (5) 

 
Although the initial values for design vector are in feasible region, diagnostics of SQP 
algorithm reports that the starting point is out of feasible region. This is because of the 
fact that the turbine runner weighs 59 kg for this initial design vector, and it violates the 
inequality constraint which is set as 50 kg. For various initial starting points, which are 
in feasible design space, the same factor of safety result is obtained. Optimum design 
parameters and the corresponding factor of safety on the most critically loaded 
component are obtained as follows. 
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p = 
    4.5269  147.6323  54.1361 
 
FOS = 
   -4.6245 
 
Figure 6 shows the maximum factor of safety value converged at each iteration 
(negative values are shown as the problem is formulated as a minimization problem). 
Running various other optimization sets validate that the starting point does not change 
the optimum obtained for the problem. For example, if the starting point of the algorithm 
is chosen as ix1  = 4.5 mm, ix2  = 140 mm and ix3  = 50 mm, the factor of safety still 
converges to 4.6245. The optimized design variables becomes, 
 

4.5269 
: 147.6324 

54.1361 

opt

opt opt

opt

x1

x2

x3

     
     = = =     
         

x
optimum disc thickness mm
optimum disc spacing mm
optimum shaft diameter mm

                                       (6) 

 
Converging to the same optimum design variables for various starting points is a well-
known common characteristic of a function that has no local minimums. Moreover, the 
weight inequality constraint is active in the problem. In other words, the increase of the 
factor of safety to a higher value is limited by the weight constraint. Even if the 
specifications of sequential quadratic programming solver are changed, the optimum 
design vector converges to the same value. 
 
On the other hand, expanding the constraint boundary affects the optimum design 
variables because of the fact that weight is an active constraint in this problem in any 
case. For instance, if the weight constraint is increased to 60 kg, the optimum design 
variables are calculated as follows. 
 

7.1068 
: 114.1499 

60 

opt

opt opt

opt

x1

x2

x3

     
     = = =     
         

x
optimum disc thickness mm
optimum disc spacing mm
optimum shaft diameter mm

        (7) 

 
Figure 7 presents the evaluation of the algorithm for this case. The new optimum 
design vector and factor of safety values indicate that weight constraint is the limiting 
factor in this problem. This is expected based on the physics of the problem. The 
increase in the weight constraint results in an increase in the minimum factor of safety 
to 6.2575. Furthermore, this time, shaft diameter restriction is at the upper bound and is 
active. 
 
Genetic Algorithm 
 
The second algorithm implemented to find the optimum design variables is a genetic 
algorithm (GA) [11], arises in the class of heuristic methods. Main motivation for 
heuristic methods is to deal with local minima and not get trapped in them while 
searching for the global optimum. Moreover, heuristics are used to solve complex 
multivariate optimization problems that are extremely challenging. Our objective 
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function is a convex function which ensures that it has no local minimums in the 
problem. Thus, we have implemented genetic algorithm to observe its performance on 
convex shape polynomials and compare the performance with the results from 
sequential quadratic method. Since the original problem is rather simplified by a convex 
quadratic polynomial obtained from response surface methodology, no matter how 
parameters of genetic algorithm are modified (such as the population size, mutation 
rate, selection or crossover rates), the optimum result is found around the values 
obtained from the gradient based technique. Moreover, it appears that the heuristic 
method operates very quickly and converges to the correct result. 
 
The genetic algorithm parameter set defined in Matlab optimization toolbox is presented 
below. In each example, objective function is constrained by an upper weight limit 
adjusted to 60 kg. Since our problem is defined by a quadratic function, constraints can 
not change the function's characteristic, that is to say, there is one local minima in any 
case. Therefore, in this part, objective function is optimized only for a weight limit 
adjusted to 60 kg. Convergence history of the genetic algorithm ensures that the 
objective function would converge to the same factor of safety for any weight limit as in 
the case of SQP. The observation in this part is based on the comparison between the 
convergence speeds of both algorithms. It seems that genetic algorithm converges 
faster than the SQP algorithm, which is advantageous for large scale problems.  
 
Optimization example 1 

6.98427 
: 111.9283 

59.99 

opt

opt opt

opt

x1

x2

x3

     
     = = =     
         

x
optimum disc thickness mm
optimum disc spacing mm
optimum shaft diameter mm

       (8) 

 
Fitness function value, FOS = 6.25555 (Fig. 8) 
Weight = 60 kg 
 
Optimization example 2 
The convergence criteria of genetic algorithm is reconfigured with different settings. 
 

7.1018 
: 114.0549 

59.99 

opt

opt opt

opt

x1

x2

x3

     
     = = =     
         

x
optimum disc thickness mm
optimum disc spacing mm
optimum shaft diameter mm

        (9) 

Fitness function value, FOS = 6.257227 (Fig. 9) 
Weight = 60 kg 
 
As it is noticed from the results, no significant change occurs when the GA parameters 
are modified. The results are close to the SQP results. GA algorithm solution also 
confirms the absence of a local minimum in the feasible region of the design space. 
 
Numerical Validation 
 
As stated earlier, second order convex polynomial obtained from response surface 
methodology is an approximation to the original problem. Thus, validation of optimum 
design vector through finite element analysis is a major part in this work. In this section, 
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factor of safety results obtained from finite element analysis and from second order 
convex function of response surface model are compared. 
 
First of all, a new runner design is created in Solidworks with the optimum design 
parameters for the problem constrained by 50 kg. After that, the model is loaded with 
the same force, which is 7500 N. Then, the model is meshed with the same elements 
and analyzed. However, the disc spacing value in the optimum design vector can not 
be directly implemented in the new runner design due to the fact that the length and the 
diameter of a runner are determined according to the hydraulic power potential of the 
application. Hence, the length of the turbine shaft needed to be modified in order to 
match the design geometry. Because of the symmetric consistency, it is required to 
distribute the discs on the shaft equally. In order to place equally spaced discs on the 
shaft, we have to modify disc spacing data obtained from optimization algorithm, to a 
near value that is dividing the shaft length equally. Thus, the disc spacing data is 
changed from 147.6324 mm to 178 mm in the optimum design set. The model is 
recreated and analyzed again accordingly. Safety factor on the critical disc then 
becomes 4.436 (Fig. 10). On the other hand, quadratic function giving the factor of the 
safety of the critical disc yields 4.3507 when the optimum design parameters with the 
modified disc spacing value entered. Taking into account that response surface model 
gives only an approximation to the original problem, the results are in good agreement 
for this case. 
 
The second comparison is between the factor of safety results of response surface 
model and the results of the finite element analysis when the weight limit is increased to 
60 kg. Again, a new runner design with optimum design parameters is generated. In 
this case, actual value of optimum disc spacing 114.1499 mm is changed to 116 mm 
which is dividing the shaft length into 3 equal parts. Minimum factor of safety on the 
critical disc obtained from finite element analysis is 6.085 (Fig. 11). Factor of safety 
result obtained from response surface function is 6.2576. Although the results are not 
as close as in the previous case, response surface model mimics the stress distribution 
on the critical disc successfully. As a result, it is clear that the static stress distribution 
on the critical disc can be monitored effectively by response surface methodology. 
 
 
CONCLUSION 
 
Through response surface methodology, design optimization of the cross-flow hydro 
turbine has been investigated. The results of SQP and GA algorithms converge to the 
same global optimum. The convergence speeds of both algorithms are very good that 
the results are obtained very fast without convergence problems. 
 
It has been demonstrated that response surface models can effectively represent 
transfer functions for complex structures. Moreover, common optimization techniques 
like SQP and GA apply well to the quadratic functions obtained from the response 
surface model. Although GA is converging faster than SQP, it is not a considerable 
amount of time for small scale problems as our case. 
 
When the optimum design variable vector, which is constrained by a weight limit of 50 
kg., is observed, an optimal length of 147.6323 mm. for disc spacing is obtained by the 
SQP algorithm. However, when the width of the turbine is considered as a constant 
parameter, it seems that equal distribution of discs for every measurement of length is 
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impossible. Therefore, as a further study, integer programming techniques can be 
applied to cope with this problem. On the other hand, the optimization problem can take 
a multi-objective form by enforcing a lower limit on the factor of safety of each 
component on the runner, as well. Each of these factor of safety limits can be stated as 
separate objective functions that transforms the problem into a multi-objective one. A 
weighted approach technique may also be applied to form a multi-objective function 
incorporating the characteristics of all individual objectives. 
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TABLES 
 

Table 1. Master table displaying the parameters and variables 
 

 MASTER TABLE 
 Definition Symbol L.B. U.B. constant Unit 

V
ar

ia
bl

es
 

Disc Thickness D.T    mm 
Disc Spacing D.S.    mm 

Shaft Diameter S. Dia    mm 

P
ar

am
et

er
s 

Head Ho   8 m 
Flow rate Q   300 lt/s 

Rotor Diameter D   300 mm 
Rotor Width B   388 mm 

Water Entrance 
Angle β   16 deg 

Velocity of Rotor U   0 m/s 
Velocity of Water Jet V   12,3 m/s 

# of Blades Z   30  
Force F   7500 N 

Steel 4340 Annealed      
Steel 1023 Carbon      

Objective F. min(-FOS)      
Constraint Weight W  50  kg 

 
 

Table 2. Bounds of the design variables 
 

Design Variable Lower Bound Upper Bound
disc thickness 2 8
disc spacing 58 174
shaft diameter 40 60  

 
 

Table 3. Box-Behnken Data Table 
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FIGURES 
 

 
 

Fig.1. Head-Flow Ranges of Small Hydro Turbines. [1] 
 
 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig.2. Cross flow turbine. [2] 
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Fig.3. Compact view of cross flow turbine runner 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.4. Design variables 
 

 
 
 
 
 
 
 

 

 
 

 
Fig.5. Box-Behnken design algorithm 
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Fig.6. Evolution of SQP algorithm for weight < 50 kg 

 
 

 

 

 

 

 

 

 

 

 

 

Fig.7. Evolution of SQP algorithm for weight < 60 kg. 
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Fig.8. FOS obtained from genetic algorithm for optimization example 1 

 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Fig.9. FOS obtained from genetic algorithm for optimization example 2 
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Fig.10. FOS of optimum design by FEA, weight < 50 kg 
 
 
 

 
 
 

Fig.11. FOS of optimum design by FEA, weight < 60 kg 
 




