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ABSTRACT 
  

The internal friction due to the shaft hysteresis or the shrink fitting release exerts a 
destabilizing effect on the overcritical rotor whirl, but may be counteracted by other 
external dissipative sources and/or by proper anisotropy of the support stiffness. The 
internal friction effect may be treated by either dry or viscous models, obtaining 
similar results in the hypothesis of small dissipation levels, provided that proper 
equivalence criteria are defined between the two approaches. The equivalence is 
here stated by imposing the same energy dissipation over a large number of shaft 
revolutions. Approximate closed-form autonomous solutions for a symmetric rotor 
arrangement subject to Coulombian non-linear friction are derived by an averaging 
approach of the Krylov-Bogoliubov type, in order to ascertain the result similarity 
between the two dissipative assumptions. Summing up, the viscous equivalent linear 
assumption appears conservative in general and may be accepted for a 
straightforward analysis of the overall rotor dynamics in the whole speed range. 
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INTRODUCTION 
 

As well known, the internal friction may exert a destabilizing influence in the speed 
range above the first critical speed, whose consequences may be important if the 
hysteretic properties of the material are remarkable (e. g. carbon/epoxy [1]). In 
despite of this, the unstable trend can be efficiently counterbalanced by other 
external dissipative sources. For example, suspending the journal boxes and letting 
them rub against dry friction surfaces on the frame, a strong damping action can be 
achieved, together with an excellent contrast to the critical flexural speeds [2-5]. 
 
The first approaches to this problem date from references [6-8]. Reference [9] 
reports a valuable stability analysis for a symmetric rotor on a hysteretic shaft, where 
the stability threshold is searched by the Routh-Hurwitz criterion. More recent 
analyses develop in-depth formulations, where the system asymmetry, the 
gyroscopic effects and the anisotropy of the supports are taken into consideration 
[10-14]. Other papers focus on the particular damping properties of the supports, for 
example hydrostatic bearings or optimized viscoelastic suspensions [15-16]. 
Approaches in terms of finite elements are also widely present in literature, together 
with thorough treatises covering several aspects [17-20]. 
 
The present analysis firstly develops the preliminary results of reference [21], 
addressing the conical whirling motions of an asymmetric unbalanced rotor-support 
assembly subject to different suspension stiffness and damping coefficients in the 
horizontal and vertical planes. The natural frequencies are traced on Campbell 
diagrams, the elliptical paths of the rotor and the bearings are calculated in the 
speed range and the stability of the steady motion is checked by the Routh-Hurwitz 
procedure in dependence on the gyro structure, on the support anisotropy and on 
the system asymmetry, showing how the hysteretic instability can be conveniently 
prevented by differentiating the suspension stiffness in two orthogonal inflexion 
planes. Wide-ranging numerical solutions indicate that the viscous linear hypothesis 
gives conservative instability thresholds in comparison with the Coulombian 
assumption when the equivalence is based on the same energy dissipation over a 
large number of shaft revolutions. 
 
Then, the analysis addresses the symmetric arrangement more in detail, in order to 
capture helpful guidelines about the possible interchangeability between the viscous 
and dry models of the internal friction. Quite similar stability conditions are found for 
balanced rotors subject to viscous or dry dissipation. While the linear case may be 
faced by the Routh Hurwitz procedure, the non-linear one may be dealt with by 
numerical procedures, but the actual situation is better elucidated by perturbation 
approaches, e. g. of the Krylov-Bogoliubov type, which may give a valid quantitative 
indication on the stability thresholds throughout the whole speed range. 

 
 

MATHEMATICAL MODEL 
 

Figure 1 shows the rotor-suspension system and may be used as a reference for the 
notation. The approach is similar to ref. [2-5, 22]. The rotor is subject to a static 
unbalance, specified by the location of the mass centre C at some fixed eccentricity 
e from the intersection O1 of the shaft axis with the rotor diametral plane, and to a 
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dynamic unbalance, which may be schematized by two equal fictitious point masses 
md, symmetric with respect to O1, lying on a meridian plane which does not contain C 
in general. The masses of the support are neglected. The torsional deformation 
between the rotor and the end sections is ignored, as the torsional motion is 
uncoupled with the bending motion within the linear approximation. 
 
The frame Cxyz moves with C remaining parallel to the fixed frame Ox0y0z0, while 

the frame Cξηζ is obtainable by another auxiliary frame fixed to the rotor, through a 

backward rotation of the diametral axes ξ and η around ζ of an angle equal to the 

rotor rotation θ = ωt. Then, the reference Cξηζ  does not partake in the main rotating 

motion with angular speed ω, but performs only the small rotations ϕ and ψ around 
the axes x and y due to the shaft deflection. Furthermore, the shaft is supposed 

horizontal and the gravitational field g is assumed directed towards −y0. 
 

The differentiation with respect to the dimensionless angular time variable θ = ωt is 

indicated with primes, whence d(…)/dt = ω(…)', etc. Moreover, defining a reference 
shaft stiffness k0, taken for example from the fixed support case (k0 = 48EI/ls

3 for two 
self-aligning bearings, or k0 = 192EI/ls

3 for two cylindrical bearings, where EI is the 

flexural stiffness and ls the shaft length) and defining a reference critical speed ωc = 

mk0 , the angular speed ratio Ω = ω /ωc may be introduced, together with the 

dimensionless stiffness ratios, K3x = k3x / k0, K3y = k3y / k0, K4x = k4x / k0 and K4y = k4y / 
k0, assuming different support stiffness in the horizontal and vertical planes. As 

regards the self-weight effects, the dimensionless gravity parameter Γ = mg/(ek0) is 
introduced. 
 
Some external environmental dissipation is supposed to act on the rotor translational 
and rotational motions and the correspondent resistances are assumed viscous-like 

and linear for simplicity, whence the viscous equivalent coefficients c1 [kg⋅s-1] and c2 

[kg⋅m2⋅s-1] are introduced, together with the damping factors d1 = 0.5c1ωc/ k0 and d2 = 

0.5c2ωc/( k0ls
2). Similarly, the damping factors d3x = 0.5c3xωc/ k0, d3y = 0.5c3yωc/ k0, d4x 

= 0.5c4xωc/ k0, d4y = 0.5c4yωc/ k0, are ascribed to the horizontal and vertical damping 
of the suspension system, where the c's stand for viscous damping coefficients of 
the supports. 

 
Similarly to [2-5], the shaft is considered massless, elastic and hysteretic, and the 
internal dissipative force acting on the rotor is assumed opposite to the velocity vrel. 

of point O1 relative to a reference system O3ξ0η0ζ0 having the coordinate axis ζ0 
through the centres of the shaft end sections and rotating with the driving end 

section at the same angular speed ω (see detail of Fig. 1). Indicating with L3 = − z3 /ls 
and L4 = z4 /ls the dimensionless distances of the rotor from the shaft ends, the 

components of vrel. in the fixed reference Ox0y0z0 are vrel.,x = 34431 LxLxx &&& −−  + 

( )34431 LyLyy −−ω  and vrel.,y = 34431 LyLyy &&& −−  − ( )34431 LxLxx −−ω . For 

viscous-like internal friction, the hysteresis force on the rotor is given by the product 

of the relative velocity and a hysteretic coefficient ch: Fh = − chvrel.. The 

correspondent forces on the two supports are given by F3h = − L4Fh, F4h = − L3Fh. In 

the hypothesis of Coulomb friction, a different model must be applied: Fh = − 

Fh,dryvrel./|vrel.|, where the coefficient Fh,dry is the friction force level. 
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Considering the steady rotation of a perfectly balanced weighty rotor immersed 
horizontally in the gravity field, the shaft deflection plane is motionless and counter-

rotates with opposite angular speed with respect to the reference frame O3ξ0η0ζ0 
fixed to the shaft end sections. Therefore, point O1 travels along a circular path in 
this reference frame and the hysteretic work done during one single revolution is 

given by the integral ch ( )∫ + tvv yx d2
,rel.

2
,rel.  = chω ∫ [(y1 − L4y3 − L3y4)

2 + (− x1 + L4x3 + 

L3x4)
2]dθ, where xj and yj are equilibrium values. Assuming that this work is 

proportional to the square of the path radius and independent of ω, it is easy 

verifiable that the product chω must be considered constant on varying ω, whence a 

constant hysteresis factor dh = 0.5chω/ k0 may be introduced (see [23]). 
 
The presence of some unbalance induces a further rotating bending of the shaft 

around the equilibrium configuration, with the same angular speed ω, and, in case of 
isotropic stiffness and damping of the supports, i. e. for K3x = K3y, K4x = K4y, d3x = d3y, 
d4x = d4y, this motion is circularly polarized, does not imply any relative velocity with 

respect to the frame O3ξ0η0ζ0 and is uninfluential on the overall friction work. In the 
case of suspension anisotropy on the contrary, the unbalanced trajectories are 
elliptical and thus, transforming the coordinates from the fixed frame to the rotating 

frame O3ξ0η0ζ0, the paths take double looped shapes and are covered by twice the 

shaft frequency, i. e. with the angular speed 2ω, because the radius vector is subject 
to increasing and decreasing phases twice during one full revolution of the rotating 
frame. 
 
Following [23], the two mentioned dissipative cycles must be dealt with separately 
and two different hysteresis coefficients ch must be defined, the one, ch1, for the 

frequency ω and the other, ch2, for the double frequency 2ω. As it is reasonable to 

assume that ωch1 =  2ωch2 = h [23], where h is a hysteresis constant of the material, 
two hysteresis factors must be introduced, dh1 = 0.5 h / k0 for the relative rotation of 
the equilibrium deflection plane and dh2 = 0.25 h / k0 = dh1 /2 for the elliptical motions 
due to the unbalance. The hysteresis factor dh1 will be used for the equilibrium 
configuration, while dh2 will be used for the frequency response to the unbalance. 
When applying the small perturbation procedure to check the system stability, very 
small deviations of the perturbed trajectories from the steady paths will be assumed 
and the factor dhi will be kept unmodified. The use of the first or the second 
hysteresis factor in the stability analysis will depend on the prevalence of the gravity 

or the unbalance effect on the rotor response, Γ = mg/(ek0) > 1 or Γ = mg/(ek0) < 1. 
 
If the internal dissipation is of the dry friction type, the work per cycle is 

Fh,dry ∫ + tvv yx d2
,rel.

2
,rel.  and a dry damping factor must be defined: dh,dry = Fh,dry /( 

k0e). The equivalence between dry and viscous friction can be stated and checked 
on the basis of the same energy dissipation during a sufficiently large number of 
revolutions and the parameters dh,dry and dh can be thus correlated with each other. 

 

Introduce the dimensionless displacement-rotation vectors X = {X1, X2, X3, X4}T  and  

Y = {Y1, Y2, Y3, Y4}T, where, using the subscripts 1, 3, 4 for the displacements of the 
rotor and the support and 2 for the rotor tilt around y and x, it was put Xj = xj /e, Yj = yj 

/e, for j ≠ 2, and X2 = ψl/e, Y2 = −ϕl/e (the minus sign in the definition of Y2 permits 
using the same stiffness matrix for both the bending planes, xz and yz). 
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Scaling all forces and moments by k0e and k0el respectively, considering self-
aligning bearings, introducing the dimensionless stiffness matrices Kjz in the inflexion 
planes xz (j = x) and yz (j = y), 
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where c = 1 or 2 for hinged-hinged or clamped-clamped shafts (c = 1 in the 
following), and the hysteretic matrices Hi for i = 1 or 2 (frequency ω or 2ω) 
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the equations of motion can be written in the form 
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(3a,b) 
 
 

 
where Md = 0.5 mdsrdr /elsm is a dynamic unbalance number, sr and dr being the axial 

size and the diameter of the rotor (see Fig. 1), and γ is the angle between the 
meridian planes through C and through the point masses md. Moreover, Jd = jd /mls

2 
and Ja = ja /mls

2 are the dimensionless diametral and axial moment of inertia of the 
rotor, scaled by the product mls

2, jd and ja being the real moment of inertia, evaluated 
in the absence of  dynamic unbalance, and the matrices Djz (j = x, y), M and G are 
diagonal and are the viscous, massive and gyroscopic matrices, whose coefficients 
are (d1, d2, d3j, d4j), (1, Jd, 0, 0) and (0, Ja, 0, 0) respectively. 
 
 
RESULTS FOR THE GENERAL ASYMMETRIC CASE 
 
The equilibrium configuration is obtainable rewriting Eqs. (3) in the form KxzXeq. + 

2H1Yeq. = 0, KyzYeq. − 2H1Xeq. = −Γ {1,0,0,0}T. This algebraic system leads to the 
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solution, Xeq. = 2ΓAxzH1 (Kyz + 4H1AxzH1)
-1 {1, 0, 0,0}T, Yeq. = −Γ (Kyz + 4H1AxzH1)

-1{1, 

0, 0, 0}T, where Ajz = Kjz
-1 are the flexibility matrices, and introducing the 2×2 shaft 

flexibility sub-matrix [A0] (fixed supports) 
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this solution can be written in the form 
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As X1eq. and X2eq. are positive for dh1 ≠ 0, while X3eq. = X4eq. = 0, the hysteresis 
appears to produce a constant bias of the inflexion plane, concordant with the 
angular speed, while the static support deflection occurs in the vertical plane. 
Equations (4) show also that the static rotor displacement is small of order dh1 in the 
horizontal direction, whereas the changes of the vertical displacement due to 
hysteresis are of order dh1

2. 
 
The natural precession modes of the rotor-shaft system are obtainable ignoring the 

forcing and dissipative terms in Eqs. (3). Defining with kl
ijK  the 2×2 matrix extracted 

by a generic 4×4 matrix K considering only the elements of rows i and j and columns 

k and l, putting xK  = ( ) 12
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exp(iΩnθ/Ω), Yj = −iYj0 exp(iΩnθ/Ω), where the dimensionless precession speed Ωn = 

ωn /ωc was introduced, the characteristic equation is a fourth degree algebraic 

equation in Ωn
2, dependent on Ω2 
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The choice between the plus or minus sign for Ωn = 2
nΩ± after solving Eq. (5) for 

Ωn
2, may be done in view of getting equal signs for the amplitudes X1,0 and Y1,0, 

whence the whirling motion of the rotor centre is a progressive or retrograde 

precession for Ωn > 0 or Ωn < 0. 
 
Figures 2 show the Campbell diagrams for two examples cases, of an oblong and an 
oblate ellipsoid of inertia of the rotor. The left diagrams refer to isotropic support 
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stiffness and the right ones to anisotropic stiffness. The continuous lines represent 
forward/backward whirl and refer to the motion of point O1, together with the other 
motions with the same whirl direction. When on the contrary the whirl direction of one 
support or of the rotor axis is counter-directed with respect to the rotor centre, a plot 
with small circles or crosses is reported, symmetric of course of another continuous 
branch. Only equal-directed whirling motions may develop for isotropic support 
stiffness, whereas some whirling directions may be opposite to the rotor centre, 
when the supports have quite different stiffness values on the two planes. 
 

The response to unbalance can be detected replacing X = Xc0 cosθ + Xs0 sinθ, Y = 

Yc0 cosθ + Ys0 sinθ into Eqs. (3) and applying a harmonic balance procedure. A 

16×16 algebraic system is obtained, whose solutions permits calculating the steady 
elliptical paths of the rotor and the supports. 

The principal half-diameters and their angles with the fixed reference frame are: 
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As an example, Figure 3a shows the equilibrium points and the steady elliptical 
trajectories of the rotor and the supports during a complete wobbling cycle, for a 
particular under-critical case. Figure 3b shows the path of point O1 in the rotating 

reference O3ξ0η0ζ0, pointing out the double looped shape of the trajectory during one 
complete revolution. 
 
The frequency response for the four whirling motions is also reported in Figs. 4 as an 
example. The figures show the major and minor radii of the elliptical paths and the 

angle φ of the major axis with respect to the horizontal plane. It is observable that the 

rotor trajectory tends to a circle with radius equal to the mass eccentricity e for Ω → 

∞, similarly to the conventional Laval-Jeffcott behaviour: the centre of mass tends to 
its centred motionless position. 
 
Stability of the Steady Motion 
 
The motion stability can be inspected throughout the speed range by some 

perturbation approach, putting X = Xsteady + X
~

, Y = Ysteady + Y
~

, where the subscript 
…steady indicates the previous steady solutions and the tilde refers to the small 
perturbations. 
 

Assuming solutions of the type X
~

= 0
~
X exp(σθ /Ω), Y

~
= 0

~
Y exp(σθ /Ω), where σ is a 

characteristic number, using the previous notation and the hysteretic factors dh1 or 
dh1 in accordance with the prevailing of the gravity or the unbalance influence in the 

system under examination, one gets a twelfth degree characteristic equation, Ec(σ) = 

b0σ12 + b1σ11 + … + bjσ
12−j + … + b11σ + b12 = 0, where the coefficient b0 of σ12 is 

equal to 16Jd
2[d3xd4x + dhi(d3xL3

2 +  d4xL4
2)/Ω] [d3yd4y + dhi(d3yL3

2 +  d4yL4
2)/Ω] > 0. As 
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regards the other coefficients, a collocation method may be applied, choosing six 

values σi arbitrarily for i = 1, 2, …, 6, evaluating Ec(σi) and Ec(−σi) and composing 

two uncoupled 6×6 algebraic systems for the even and odd coefficients bj: 
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Then, the usual Routh-Hurwitz procedure can be applied to calculate the thresholds 
of stability, i. e. the levels of the external viscous damping needed to nullify the 
destabilizing effect of the internal hysteresis. This is done exploring the speed range 
carefully for several values of the geometrical and mechanical parameters of the 
rotor-shaft-support system and increasing the external viscous damping stepwise by 
a trial and error technique. The main features of the system behaviour are reported 
in the examples of Fig. 5, where the damping factors d1 and d2 were chosen null and 
all the others were assumed equal (d3x =  d3y =  d4x = d4y = ds). 
 
Figure 5a reports the stability threshold ds in dependence on the geometrical location 
of the rotor along the shaft. In particular, it shows the effect of the stiffness 
anisotropy of the supports. It is interesting that the increase in the stiffness 
anisotropy improves the stability of the whirling motion mainly if the rotor is mounted 
at the mid-span of the shaft. Actually, no external viscous dissipation source is 
required for symmetric systems if the relative difference between horizontal and 
vertical stiffness is larger than a certain limit value. This result agrees with the ones 
of the following section and with reference [9], but it is here clearly shown how the 
beneficial influence of the support anisotropy decreases on shifting the rotor towards 
the one or the other support, unless the suspension system is isotropic, in which 
case the worst stability conditions are just found in the symmetric configuration. 

Observe that, on increasing the difference Ky − Kx, the curves of Fig. 5a begin to 

show a sort of dip near L3 ≅ 0.4, which becomes more and more pronounced until 
turning the curve towards the point L3 = 0.5, ds = 0 for higher stiffness gaps (perfect 
stabilization). In this region however, the diagrams are quite steep, so that the best 
benefit of the suspension anisotropy appears confined in a rather narrow interval 
astraddle the mid-span, though it remains always favourable with respect to the pure 

isotropic case Ky = Kx also for moderate values of Ky − Kx. Thus, the results of 
previous studies (e. g. [9]) are confirmed but appear strongly limited by an even 
small change of the rotor position in the neighbourhood of the shaft middle section. 
 
Figure 5b shows similar plots, but focuses on the gyro structure, which is found to 
exert a slight but clear destabilizing effect and in fact, the case of a spherical 
ellipsoid of inertia of the rotor (Ja = Jd) requires the lowest additional viscous 
damping to stabilize the rotor whirl. 
 
The influence of the elastic dissymmetry between the front and back suspension is 
shown in Fig. 5c, whose diagrams may be prolonged for L3 > 0.5 by mirror 
interchange of the two lower curves. These plots indicate the convenience of a more 
flexible suspension of the support closest to the rotor, particularly if the rotor is 
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mounted roughly halfway between the mid-span and the support. On the other hand, 
it is to be observed that all diagrams of Figs. 5 a,b,c,d indicate in general a stabilizing 
effect of the geometrical asymmetry of the rotor configuration and a negligible 

influence of the shaft hysteresis for L3 → 0.  
 
At last, the case of "infinite" vertical stiffness (journal boxes moving only horizontally) 
is compared in Fig. 5d with the isotropic stiffness case: the unidirectional support 
compliance appears here much more convenient with respect to the axial-isotropic 
case. 
 
The stability control can be also carried out by numerical integration, starting from 
random initial values and using some proper routine, for example of the Euler-
Cauchy or Runge-Kutta types, though this kind of approach is more wearisome. 
Nevertheless, this turns out to be a convenient procedure when modelling the 
internal dissipation by dry friction. Assuming such a friction model as the most 
appropriate for a particular system, the internal hysteretic force acting on the rotor 
has to be considered constant and opposite to the relative velocity with respect to 
the rotating frame shown in the detail of Fig. 1, and has thus the two components Fhx 

= − Fh,dry vrel.,x /
2
rel.,

2
rel., yx vv + , Fhy = − Fh,dry vrel.,y /

2
rel.,

2
rel., yx vv + . Furthermore, it is 

to be observed that the differential system (3a,b) is of the twelfth order, due to the 
neglect of the support masses, and when integrating numerically, the third and fourth 
equations of (3a) and (3b) must be solved in advance for the four derivatives, X'3, 
X'4, Y'3, Y'4 at each step. This task can be fulfilled by simple inversion of sub-
matrices in the viscous linear case, but must be carried out by some iterative 
procedure in the dry non-linear one. 
 
The numerical integration of Eqs. (3) permits comparing the results obtainable by the 
viscous and dry models. To this end, some equivalence criterion must be stated 
between the coefficients Fh,dry and ch or else between the hysteresis factors dh,dry = 

Fh,dry/k0e and dh = 0.5chω/k0, and this may be done for example by imposing the 
same dissipated work over a period of several revolutions of the rotor: dh,dry = 

2dh ( ) ∫∫
++ ′+′′+′ πθ

θ
πθ

θ
θηξθηξ

NN
e

2 2
0

2
0

2 2
0

2
0 dd  where N >> 1. During the calculation of 

the diagrams reported in the following figures 6, the dry coefficient dh,dry was updated 
at the end of each long period according to this equivalence criterion, until it reached 
a nearly invariable asymptotic value. Then, the numerical integration re-started using 
this asymptotic value. 
 
Figure 6a shows the transient path of point O1, in the viscous and dry assumption, 
for a stable under-critical case. As clearly observable, the two diagrams exhibit 
nearly the same evolution and tend to the same elliptical path. On the contrary, 
Figure 6b refers to an unstable over-critical case, but shows that the two trajectories 
are roughly similar. Moreover, checking several working conditions close to the 
stability threshold, it is observable that the threshold is reached for slightly higher 
levels of the external damping by the linear hysteretic model than by the Coulombian 
one. As a result, it appears that the viscous hysteretic hypothesis can be 
conveniently applied also in the case of uncertainty about the amount of Coulombian 
friction within the whole internal dissipation, giving quite conservative results.   
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ANALYTICAL APPROACHES TO THE SYMMETRIC CASE 
 
The effect of the stiffness anisotropy may be better elucidated by analysing a rotor 
mounted at the mid-span of a shaft on symmetric supports, K3x = K4x = Kx,tot. /2, K3y = 
K4y = Ky,tot. /2, with equal damping factors, d3x = d4x = d3y = d4y = ds,tot. /2, and zero 
external dissipative forces on the rotor, d1 = d2 = 0. In this case, the conical whirl is 
uncoupled with the cylindrical whirl and is independent of the hysteresis and stable. 
Actually, all the following approaches for the simpler symmetric case could also be 
extended and adapted to the general asymmetric case, but would just replace its 
original differential system with another one to be solved numerically all the same 
and would not yield straightforward analytical results. 
 

Putting X1 = Xr, X3 + X4 = 2Xs, Y1 = Yr, Y3 + Y4 = 2Ys, observing that Kjz11 = −2Kjz13 = 

−2Kjz14 = 1, 2Kjz33 = 2Kjz44 = 1 + Kj,tot. (for j = x or y), the perturbed cylindrical motions 
included in Eqs. (3a) and (3b) may be described by the simpler differential system: 

 

Xr − Xs + 2dhi (Xr'− X's + Yr − Ys) + Ω2Xr" = 0 

− Xr + (1 + Kx,tot.)Xs + 2Ωds,tot.X's − 2dhi (Xr'− X's + Yr − Ys) = 0 

Yr − Ys + 2dhi (Yr'− Y's − Xr + Xs) + Ω2Yr" = 0 

− Yr + (1 + Ky,tot.)Ys + 2Ωds,tot.Y's − 2dhi (Yr'− Y's − Xr + Xs) = 0 

(8a,b,c,d)

 
where the tildes have been omitted. 
 

Replacing solutions of the type exp(σθ /Ω), it is easy to arrive at the sixth degree 
characteristic equation 

 

(H2 + 4dhi
2)(Ax + σ2)(Ay + σ2) + σ4AxAy + σ2H[Ax(Ay + σ2) + Ay(Ax + σ2)] = 0 (9)

 

where H = 1 + 2dhiσ /Ω, Ax = Kx,tot. + 2ds,tot.σ, Ay = Ky,tot. + 2ds,tot.σ, and it is observable 
that the fifth Routh-Hurwitz determinant RH5 is the first one that becomes critical on 
increasing the hysteresis factor dhi. Neglecting the viscous damping, in order to 
assess the self-stabilizing aptitude of the system, and assuming the realistic 

hypothesis that (2dhi /Ω)2 << 1, this determinant may be ascertained as positive and 

then stable if the difference (Ky,tot. − Kx,tot.) is of the same order of magnitude of Kx,tot. 

and Ky,tot.. When on the contrary (Ky,tot. − Kx,tot.) is of order dhi, one can find that the 

dominant part of RH5 is given by RH5 ≅ (2 + Kx,tot. + Ky,tot.)(Kx,tot.Ky,tot.)
2(2dhi /Ω)3{(Ky,tot. 

− Kx,tot.)
2 − 8dhi

2[(Ky,tot. − Kx,tot.)
2 + 2(Kx,tot.Ky,tot.)

2]}, whence the following stability limit 
may be obtained irrespective of the angular speed 

 

hihitotxtoty

totytotx

ddKK

KK

4

1

2

1

16

1
2

.,.,

.,.,
≅−<

−
 (10)

 
This result is in perfect accordance with Fig. 5 a,b for L3 = 1/2 and points out how the 
elastic anisotropy of the supports may exert a strong stabilizing effect. 
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Small Perturbation Procedure 
 

Putting U = X + iY, V = X − iY, multiplying Eqs. (8c) and (8d) by the imaginary unit i, 
summing and subtracting them from Eqs. (8a) and (8b) respectively, one gets  

 

Ur − Us + 2dhi [(Ur' − U's) − i(Ur − Us)]  + Ω2Ur" = 0 

− Ur + (1 + 
2

.,., totytotx KK +
)Us + 

2

.,., totytotx KK −
Vs + 2Ωds,tot.U's + 

      − 2dhi [(Ur' − U's) − i(Ur − Us)] = 0 

Vr − Vs + 2dhi [(Vr' − V's) + i(Vr − Vs)]  + Ω2Vr" = 0 

− Vr + (1 + 
2

.,., totytotx KK +
)Vs + 

2

.,., totytotx KK −
Us + 2Ωds,tot.V's + 

      − 2dhi [(Vr' + V's) + i(Vr − Vs)] = 0 

(11a,b,c,d)

 
In the hypothesis that the dissipative factors ds and dhi are small, the characteristics 

roots of system (11) are very close to the natural frequencies Ωn. Therefore, putting 

U = U0 exp(iσθ/Ω), V = V0 exp(iσθ /Ω), where σ is nearly real and very close to one of 

the Ωn's and the constant vectors U0 and V0 are nearly real as well, it is easy to 
recognize that U and V describe progressive and retrograde precession motions 

respectively for Real(σ) > 0, or vice versa for Real(σ) < 0, which motions are coupled 

with each other through the differential stiffness coefficient (Kx,tot. − Ky,tot.)/2. In 
accordance with the elliptic shape of the orbital paths, all natural modes turn out to 
be composed of progressive and retrograde circular motions, which become 
uncoupled for Kx,tot. = Ky,tot.. Notice that the ideal non-dissipative natural modes are 
uncoupled in the horizontal and vertical planes by Eqs. (8a,b,c,d). 
 

All small parameters can be scaled by dhi, putting ds,tot. = δ dhi and σ = Ωn + iλdhi, 

where δ and λ are numbers of order one and stability requires the real part of λ to be 

positive, in order that the real part of iσ is negative. Replacing the above exponential 
solutions into Eqs. (11a,b,c,d) and retaining only the terms of order 1 and dhi, one 
gets a complex algebraic system for Ur0, Us0, Vr0, Vs0, whose coefficients are given 
by the matrix 

 
( )

( )
( )

( )
























++
+

+−−
−

−−−+−

−
++

+
+−−

−−−+−

++

++

−−

−−

nhi
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hinhin

totytotx
nhi
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hinhin

sd
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sd
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.,.,)(.,.,)(

)()(2

i2
2

1i21
2

0

i21i2100

2
0i2

2
1i21

00i21i21

 

(12)

 

where one has put s(−) = Ωn /Ω − 1 and s(+) = Ωn /Ω + 1. Cancelling the terms 
containing 2idhi, we get the characteristic equation for the natural frequencies: 

 

( ) ( ) 01
2

11
2

1
22

2
.,.,

2

2.,.,
=−







 −
−












−−







 +
+ n

totytotx
n

totytotx KKKK
ΩΩ  (13)
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whence Ωn
2 = 1/(1 + 1/Kx,tot. or y,tot.). 

 

The first order correction λ to the eigenvalues of system (11) may be obtained 
multiplying the terms with 2idh1 in the determinant of (12) by their own cofactors in 
the ideal matrix with dhi = 0. After some algebra, one gets 

 

( ) ( ) ( )( ) ( ) 0212
1

11
2

1i2
223

2
2.,.,

=
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−−++
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
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



−










−−







 +
+ +− λΩδΩ

Ω

Ω
Ω nn

n

n
n

totytotx
hi ss

KK
d  (14)

 

Since the quantity (s(−) + s(+))Ωn
3 = 2Ωn

4/Ω is always positive, Equations (13) and (14) 

clearly indicate that λ is real and positive and the motion is stable. Nevertheless, for 

small anisotropy, i. e. for (Kx,tot. − Ky,tot.)/2 of the same order of dhi, the left hand of Eq. 
(14) becomes of order dhi

2 by Eq. (13) and Equation (14) does no longer hold true in 
a first approximation analysis, as other terms should be taken into account in the 
development of the determinant (12): the results from Eq. (14) are then valid only for 
relatively large anisotropy and reveal stability, in accordance with the previous 

approach. For (Kx,tot. − Ky,tot.)/2 of order dhi on the contrary, one can put Km = (Kx,tot. + 

Ky,tot.)/2, κ dhi = (Kx,tot. − Ky,tot.)/2, Kx,tot. = Km + κ dhi, Ky,tot. = Km − κ dhi, where κ = O(1), 

and Equation (13) becomes [(1 + Km)(1 − Ωn
2) − 1]2 = 0, whence Ωn

2 = Km /(1 + Km) 
twice. The dominant terms of the complete characteristic equation yield 

 

( )
( ) ( )[ ] ( ) ( )[ ] 0

4
11

1

4 2
2222

2

2

=



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
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

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++−++−+
+

+− κ
ΩλΩδΩλΩδ mnnmmnnm

m

hi KKsKKs
K

d
 (15)

 

and, as s(±) = Ωn /Ω ± 1 and Ωn = ± ( )mm KK +1 , Equation (15) gives 
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110

41
1

2
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22
4

2

2
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λδ
Ω

κ
λδ

Ω
m

m
m

m
m

m

m
m

m K
K

K
K

K
K

K
K

K  (16)

 

Equation (16) points out that the absolute stability (i. e. for 0 < Ω  < ∞) can be 

obtained only for δ 2 > (1 + 1/Km)(Km
4 − κ2/4) if Km

4 > κ2/4, because λ turns out to be 

always real and positive. The stability is always ensured for any viscous level δ on 

the contrary, even for δ → 0, if Km
4 < κ2/4, which condition confers an imaginary 

value to λ and is exactly equivalent to Eq. (10), if one minds that Kx,tot.Ky,tot. = Km
2 + 

O(dhi) and κ2/4 = [(Kx,tot. − Ky,tot.)/(4dhi)]
2. 

 
As the perturbed motions under examination are very close to the natural precession 
motions, it is also possible to opt for a slightly greater precision in the definition of the 
hysteretic effect and consider such motions affected by their own hysteretic 

coefficients chn = h / |ωn − ω|, inversely proportional to the relative angular speed |ωn 

− ω| [23]. Therefore, recalling that ch1 = h /ω and dh1 = 0.5 h /k0 for the relative 
rotation of the equilibrium deflection plane, the hysteretic damping factors dhi of Eq. 

(11) could be replaced by the more specific ones dhn = chnω /2k0 = (chn /ch1)h / 2k0 = 

dh1 / |Ωn /Ω − 1|. Applying these corrections, the quantities s(±) would now stand for 

sgn(Ωn /Ω ± 1) in Eq. (15), whence s(+) = 1 and s(−) = −1 in the supercritical regime. 
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As a consequence, Equation (16) would still be applicable, save the disappearance 

of the term Km
2 /Ω, and the final result (10) would then remain unchanged. 

 

Should we consider the true isotropic case Kx,tot. = Ky,tot. = Km, κ = 0, Equations (11 
a,b) would be uncoupled from Eqs. (11 c,d), the ideal natural  frequencies would be 

given by Ωn
2 = Km /(1 + Km) (twice) and the stability equation (15) would change into 

s(±)Km ( )mm KK +1  + δ − λ (1 + Km)2 > 0, the minus and plus signs referring to 

progressive and retrograde rotations respectively (U progressive and V retrograde 

for Ωn > 0). While the retrograde motions V are stable, the progressive ones U may 

happen to become unstable on increasing the angular speed, as s(−) becomes 

negative. Nonetheless, the condition of absolute stability (λ > 0 for ω → ∞) would still 

be δ − Km ( )mm KK +1  > 0. It is also remarkable that all the above results are valid 

for both the hypotheses, that s(±) = Ωn /Ω ± 1, or else that s(±) = sgn(Ωn /Ω ± 1). 
Summing up, Equation (15) yields the interesting indication that the stabilizing effect 
of the stiffness anisotropy of the supports is associated in practice to a sort of 

coupling between progressive and retrograde precession motions (κ > 0), which 

coupling is absent in the isotropic systems (κ = 0). 
 
Autonomous Case: Krylov-Bogoliubov Technique 
 
A new original approach, which may be considered as an extension of the Krylov-
Bogoliubov averaging method [24] to several degrees of freedom, can be also 
applied to the search for the stability threshold of weakly non-linear autonomous 
systems, i. e. of perfectly balanced rotors. As the calculation is quite laborious, it will 
be here synthesized, in order to just highlight the main results. 
 
Summing Eqs. (8a) and (8b), summing Eqs. (8c) and (8d), using the damping factor 

dh1 as the rotor is balanced, indicating the small parameter dh1 with ε and applying 
the previous notation for the other quantities, one gets 

 

Ω2Xr" + KmXs + ε (2ΩδX's + κXs) = 0 

Ω2Xr" + Xr − Xs + εΦX = 0 

Ω2Yr" + KmYs + ε (2ΩδY's − κYs) = 0 

Ω2Yr" + Yr − Ys + εΦY = 0 

(17a,b,c,d)

 

and has to put ΦX = (dh,dry/dh1)cosψ, ΦY = (dh,dry/dh1)sinψ, tanψ = (Y'r − Y's − Xr + 

Xs)/(X'r − X's + Yr − Ys) for non-linear dry friction, whereas putting ΦX = 2(X'r − X's + Yr 

− Ys) and ΦY = 2(Y'r − Y's − Xr + Xs) would restore the linear viscous case. 
 

The zero order solution (ε = 0) is Xr = Acos(ρθ + α), Yr = Bsin(ρθ + β), Xs = Ωn
2Xr /Km, 

Ys = Ωn
2Yr /Km, where ρ = Ωn/Ω, Ωn

2 = Km/(1 + Km) and A, B, α, β are constant. 
Hence, following the Krylov-Bogoliubov approach, one can try a first order 

approximation of the type Xr = A(θ)cos[ρθ + α(θ)], Yr = B(θ)sin[ρθ + β(θ)], Xs = Ωn
2Xr 

/Km + as(θ), Ys = Ωn
2Yr /Km + bs(θ), imposing the additional conditions X'r = − 

ρA(θ)sin[ρθ + α(θ)], Y'r = ρB(θ)cos[ρθ + β(θ)]. Replacing this solution into Eqs. (17) 
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and neglecting terms of order ε2 or smaller, two coupled differential systems are 

obtained for the six unknown functions A(θ), B(θ), α(θ), β(θ), as(θ), bs(θ): 
 

Aα'ΩnΩcos(τ−µ) + A'ΩnΩsin(τ−µ) − Kmas =                   

 = ( ) ( )[ ]µτΩδµτκ
Ω

ε −−− sin2cos
2

n
m

n A
K

 

Aα'ΩnΩcos(τ−µ) + A'ΩnΩsin(τ−µ) + as = εΦX 

Aα'sin(τ−µ) − A'cos(τ−µ) = 0 

(18a,b,c)

Bβ'ΩnΩsin(τ+µ) − B'ΩnΩcos(τ+µ) − Kmbs =       

 = ( ) ( )[ ]µτκµτΩδ
Ω

ε +−+ sincos2
2

n
m

n B
K

 

Bβ'ΩnΩsin(τ+µ) − B'ΩnΩcos(τ+µ) + bs = εΦY 

Bβ'cos(τ+µ) + B'sin(τ+µ) = 0 

(19a,b,c) 

 

where it was put τ = ρθ + (α + β)/2 and µ = (β − α)/2 for brevity. Equations (18) and 

(19) indicate that the quantities A', α', as, B', β' and bs are small of order ε, whence 

the amplitudes A(θ) and B(θ) and the phases α(θ) and β(θ) vary much more slowly 

than the argument ρθ. 
 

Considering only the dominant terms of ΦX and ΦY and carrying out some long 
calculations, we may arrive at  
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,
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d

d

hi

dryh
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(20a,b)

 

where tan2φ = [(A2 + B2)/( A2 − B2)]×tan2µ, which relation is associated to the 

condition (1 − ρ2)sin2µ / sin2φ > 0, and 
 

( )( )
2

4cos212cos41 22442222 µρµρρ BABAABBA
W

−+−+−++
=  

k2 = 
( )( ) µρµρρ

µρ

4cos212cos41

4cos212

22442222

22442
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(21a,b)

 
Moreover, neglecting the change of the slowly varying variables, the condition of 
equal dissipative work for dry and viscous friction reads 
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where E(k) is the Legendre's complete normal elliptic integral of the second kind. 
 

Replacing Eqs. (20) into Eqs. (18-19), using Eqs. (21) and (22), solving for A', B', α', 

β', and integrating with respect to the "quick" variable τ over a period 2π, the slow 

gradients A', α', B', β' turn out to be functions of the complete elliptic integrals of the 
first and second kinds, whose values may be found tabulated in several 

mathematical handbooks. Putting εΩ = ε / [ΩΩn(1+Km)2], P = (2 − k2)(K − E)/(k2E), Q 

= (2 − k2)K/(2E), where K(k) is the Legendre complete normal elliptic integral of the 
first kind, one gets 

 

( ) ( ) ( )[ ]{ }AAQAQPQBBQPKA nm ΩδρφµρµφεΩ −−−−−+−=′ 2cos2cos2cos2  

( ) ( ) ( )[ ]{ }BBQBQPQAAQPKB nm ΩδρφµρµφεΩ −−+−++−−=′ 2cos2cos2cos2  

 

( ) ( ) ( )[ ]{ }22sin2sin2sin2 κφµρµφεα Ω AAQPQBBQPKA m +−−−+−−=′  

( ) ( ) ( )[ ]{ }22sin2sin2sin2 κφµρµφεβ Ω BBQPQAAQPKB m −+−−−−=′  

(23a,b,c,d)

 
Notice that, putting P = Q = 1, one regains the equations of the linear viscous case. 
 

Multiplying Eq. (23a) by A, Eq. (23b) by B, minding the previous definition of φ and 
subtracting, one may arrive at the relation 
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whose right hand turns out to be negative in the field of interest, so that A − B → 0 

and we may put A ≅ R, B ≅ R after some time. Hence, putting S = ( )222 QPQ −+ ρ , 

tan2ψ = ρ(P − Q)sgn(sin2µ)/Q, Eqs. (23 a,b) give place to 
 

( )











−−+=

′
ρ

Ωδ
ψµεΩ Q

K
SK

R

R

m

n
m 2
2 2cos  (25)

 
while Eqs. (23 c,d) give 
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P, Q, and S are very slowly varying functions of µ, A and B through the modulus k of 
the elliptic integrals and may be approximately considered invariant when integrating 

Eq. (26). Putting b = κ /(2Km
2) − (P − Q)sgn(sin2µ) for brevity. Equation (26) can be 

integrated to 
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            for b2 < S2 

(27 a,b)

 

where the upper sign holds for b tan(µ + ψ) + S − 22 bS −  > 0, the lower one vice 

versa and the new variable ϑ = θ − θ0 includes the integration constant θ0. 
 

Equations (27 a,b) permit expressing cos2(µ + ψ) as a function of ϑ and integrating 
Eq. (25). Omitting the calculation procedure for brevity, it is possible to find that 

( )[ ] ϑρΩδψµ
ϑ

d2cos
0

2
∫ −−+ QKS mn  is a diverging negative function of ϑ for b2 > S2, 

whereas for b2 < S2, it is easily observable that tan(µ + ψ) → bbSS 




 −−− 22  for 

ϑ → ∞, implying that µ + ψ tends to an asymptotic nonzero value and cos2(µ + ψ) → 
221 Sb−± . Therefore, R tends to vanish and the motion is certainly stable for b2 > 

S2, whereas for b2 < S2, replacing the above asymptotic value of cos2(µ + ψ) into Eq. 
(25), it is possible to get the stability condition 
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   (28)

 

which, minding that Ωn = ( )mm KK +1 , changes into Eq. (16) applying the "viscous 

values" P = Q = S = 1. Notice also that the condition b2 > S2 becomes κ2/(4Km
4) > 1 

in this case. 
 
Equation (28) permits calculating the stability threshold levels of the external 

damping δ = ds,tot./dh1 for the non-linear case, introducing suitable approximation 
formulas for the elliptic integrals, which give their values as functions of the square of 

the complementary modulus m = 1 − k2 [25] and yield a precision of order 10−8: E(k) 

= ( )∑
=

−+
4to1

ln1
i

i
EiEi mmba , K(k) = ( )∑

=

−+
4to0

ln1
i

i
KiKi mmba , where the coefficients are 

given by 
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Table 1. Coefficients of approximation formulas for complete elliptic integrals [25]. 

 
aE1 = 0.44325141463 bE1 = 0.24998368310 
aE2 = 0.06260601220 bE2 = 0.09200180037 
aE3 = 0.04757383546 bE3 = 0.04069697526 
aE4 = 0.01736506451 bE4 = 0.00526449639 

  
aK0 = 1.38629436112 bK0 = 0.5 
aK1 = 0.09666344259 bK1 = 0.12498593597 
aK2 = 0.03590092383 bK2 = 0.06880248576 
aK3 = 0.03742563713 bK3 = 0.03328355346 
aK4 = 0.01451196212 bK4 = 0.00441787012 

 
 

Two indicative diagrams are reported as examples in Figs. 7 and 8, showing the 
threshold levels of the external dissipation needed to damp the whirl instability, for 
both the Coulombian and viscous models. As observable, the Krylov-Bogoliubov 
approach gives results in the non-linear case that are very close to the viscous 
assumption. Figure 7 shows the stability threshold in dependence on the shaft 
angular speed, for a fixed value of the anisotropy parameter of the suspension 
stiffness, and it is here to be remarked that negative threshold values indicate that 
there is no need of external dissipation sources (self-stabilizing rotor system). The 
plots of this first figure are monotonicly increasing with the angular speed and thus, 
Figure 8 was traced, showing the stability threshold in dependence on the 
suspension anisotropy for infinite rotor speed, whose limit value indeed ensures the 
rotor stability throughout the whole speed range. It is observable that the increase of 
the suspension stiffness anisotropy yields a significant improvement of the stability 
conditions and, for anisotropy levels larger than a certain value, the rotor system 
turns out to be self-stabilizing for any angular speed, similarly to Fig. 5. 
 
 
CONCLUSION 

 
The present paper discusses on some procedures to counteract the destabilising 
effect of the shaft internal hysteresis in the supercritical regime of a rotating machine, 
by making use of external dissipative sources or by planning anisotropic support 
stiffness, differentiated in the horizontal and vertical planes. An equivalent coefficient 
of linear viscous damping, inversely proportional to the angular speed may be 
introduced for the calculation of the hysteretic friction force, which may be assumed 
proportional to the rotor centre velocity relative to a reference frame rotating with the 
shaft end sections. Otherwise, in the hypothesis of Coulombian internal friction, the 
internal force may be assumed constant and constantly in opposition to the relative 
velocity. The Routh-Hurwitz method may be applied to control the linear stability of 
the steady motion and the influence of several design characteristics of the rotor 
system on the stability may be analyzed, searching in particular for the viscous level 
needed for the stabilization in the whole speed range. The favourable effect of the 
support anisotropy is remarkable for symmetric rotors, but tends to become less 
efficacious when the rotor is mounted away from the mid-span. The two different 
hypotheses about the internal friction, viscous or dry, do not affect remarkably the 
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response and the stability of the rotating system, provided that the comparison is 
made in conditions of equal dissipative work in a sufficiently long run. Moreover, the 
simpler case of a symmetric rotor may be treated by averaging approximation 
techniques, e. g. of the Krylov-Bogoliubov type, capturing helpful formulas for the 
stability limits in correlation with the support stiffness characteristics. 
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Fig. 6. Example of transient paths of point O1, for viscous and dry hysteretic 
force and equal dissipative work (50 revolutions). Data: d1 = d2 = 0, dh = 0.02 

K3x = K4x = 1, K3y = K4y = 3, Jd = 0.1, Ja = 0.2, L3 = 0.4, Γ = 1, Md = 1, γ = 90° 

(a): stable, d3x = d4x = d3y = d4y = 0.1, dh,dry = 0.049, Ω = 0.8 

(b): unstable, d3x = d4x = d3y = d4y = 0.005, dh,dry = 0.012, Ω = 5 
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Fig. 7. Stability threshold of suspension-to-hysteretic damping ratio ds,tot. / dh1 versus 
shaft angular speed, for fixed suspension anisotropy. 
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