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ABSTRACT 

 
Friction was neglected by many authors when modeling the transverse oscillation of 
the rail during its movement. The non-considered contact friction leads to a violation 
of the law of conservation of momentum. In such a case, all the energy spent on the 
rotation of the railway wheels around the railway train axes and composition did not 
make a move. This problem definition was solved during movement of one wheel.  
 
In this paper, the analytical solution of the problem of transverse oscillation of the rail 
which lies on the discrete base during movement of the wheel with taking into 
account dry friction on the «wheel-rail» contact is obtained. Research of transverse 
oscillation of the rail during its movement considering rails junctions, number of ties, 
railway train axes, space and reflected waves propagation from the rails’ wheels and 
butts is conducted.  
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NOMENCLATURE 
 

t Time 
m Mass of unit of the rail length 
x Abscissa of the current rail section 

jx  Coordinates of the j-th tie 

s Number of ties 

 txy ,  Rail deflection 

c Base stiffness 
E Modulus of elasticity of rail 
J Moment of inertia of the rail cross-section 
v0 Movement rate of wheel on the rail 

k  Force of rolling dry friction 

 xtv 0
 Dirac delta function 

l
 

Rail length 
 
 
INTRODUCTION 

 

At the present time, there are a large number of works [1-3] which describe the 
interaction of the rail with movable loads. However, these papers consider rail which 
lies on a continuous elastic base and without dry friction on the «wheel-rail» contact. 
Taking into account discrete base of the rail leads to the determination of the set of 
unknown reactions of discrete connections by the number which is equal to the 
number of sleepers, that  represents a significant difficulty to obtain a decision even 
in statics. Taking into account such a nonlinear dissipation mechanism as dry friction 
between the wheels and the rail, generates additional complications problems 
(Figure 1). If dry friction is not considered, it violates the law of conservation of 
momentum in classical mechanics. This means that when the power is turned on 
and its further growth, the composition is standstill and is not capable of moving. All 
the power must go to the wheel with increasing angular velocity revolved around its 
axis; i.e. there is no translational motion (skidding system).  
 
However, in practice, the movement takes place, it means that the friction, which is 
not counted in theory, takes place in practice and provides a necessary movement of 
the composition. Dry friction is not an active force, but at the same time provides the 
movement of rail transport. Research in this field in the world held for about two 
centuries , meanwhile, there is no precedent inclusion of this force in the equation of 
motion . 
 
 
TRANSVERSE OSCILLATION OF THE RAIL WHICH LIES ON THE DISCRETE BASE 

 
In this problem, ties are taken as discrete elastic connections. Then the differential 
equation of motion is described as follows: 
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Equation (1) is reduced to the following form: 
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Applying the Tyurekhodjaev’s method of partial discretization of nonlinear equations 

[4] to equation (2) with a discontinuous right-hand side we get the following result: 
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(7)  

 
where xj is the coordinates of the discretization points.  
 
Consider the homogeneous equation: 
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The solution of the equation of motion, which corresponds to eigen oscillations, is 

presented as [5]: 

      ptxutxy cos, , (9) 

 

where  xu  is the amplitude function, p  is the angular frequency of oscillation.  

 
Substituting by Eqn. (9) into Eqn. (8), we obtain the following ordinary differential 
equation: 
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where  
                                 EJ
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2
4  . (11) 

 
Roots of the characteristic equation corresponding to equation (10) will be a  and 

ia . In accordance with it, the solutions of the homogeneous equation (10) can be 

expressed in terms of ax  trigonometric and exponential functions: 

 

   axCaxCeCeCu axax sincos 4321   . (12) 

 
Taking into account Eqn. (9), equation (7) is written in the following form: 
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The right-hand side of Eqn. (13) is denoted as: 
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Lagrange’s method of variation of undetermined coefficients is used to obtain the 
general solution of the non-homogeneous differential equation (13) as follows:  
 

       axCaxCeCeCxu axax sincos 4321  
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Substituting by Eqns. (9) and (15) into Eqn. (7), the general solution of the non-
homogeneous differential equation, i.e. Eqn. (7), is represented by: 
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321 ,, CCC  and 4C  are determined using boundary conditions, i.e. Eqns. (5) and (6): 
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Substituting by Eqn. (17) into Eqn. (16), the solution of the differential equation of 
motion of the transverse oscillations of the railway which lies on discrete elastic base 
is: 
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When  1k  and time 0t     0t , therefore 01 F , 02 F  and   321 ,, CCC  and

4C  take the following values:         

 

 alsh

FF
C

4

43

1


 ,  

 alsh

FF
C

4

43

2


 ,    03 C ,    

 al

FF
C

sin2

43

4


 . (23) 

 
Taking into account Eqn. (23), equation (22) after some transformations leads to the 

following form: 
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CONCLUSION 

 
The above formulation of the problem of transverse deformation of the rail train, 
which lies on the discrete elastic base during movement of the wheel with taking into 
account dry friction on the «wheel-rail» contact, is performed for the first time. The 
analytical solution of oscillation of the rail is obtained. 
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Fig. 1. A schematic drawing for rolling wheel on the rail which lies on the discrete base 

 

 
 
 
 


