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ABSTRACT 
 
In today’s competitive manufacturing environment, the challenge is to responsively 
produce products with minimum cost and high quality. Achieving and controlling the 
targeted quality level in manufacturing processes does not only increase customer 
satisfaction, but it can also result in significant cost and time savings. Further, 
measuring the process performance is a critical issue in process improvement 
initiatives. The common practice in several industries is using the Univariate Process 
Capability Indices (UPCIs) to measure the process performance, which are based on 
only a single quality characteristic. In most of the applications, it is not acceptable to 
judge the performance based on a single quality characteristic as it actually relies on 
more than one characteristic. In this paper, univariate and multivariate PCIs are used 
to measure the performance of the flare making process. This process is a critical 
step in the straight fluorescent light bulb production line. In addition, multivariate 
control charts such as the Hotelling �� as well as the Multivariate Exponentially 
Weighted Moving Average (MEWMA) are constructed for the collected data to verify 
that the process is in control before assessing its capability. Besides, Principal 
Component Analysis (PCA) and Joint Normal Distribution (JND) techniques are 
applied in the multivariate process capability assessment. In this paper, Multivariate 
Process Capability Indices (MPCIs) have been evaluated to compare the process 
performance before and after improvement efforts. In the considered case study, 
MPCIs provide the user with an overall assessment of process capability regardless 
of the fluctuations in the individual variables capabilities. 
 
 
KEYWORDS 
 
Process capability, Multivariate process capability, Principal component analysis, 
Multivariate control charts. 
 
 
 
----------------------------------------------------------------------------------------------------------------- 
1 Demonstrator, Department of Production Engineering and Mechanical Design, 

Faculty of Engineering, Menoufia University, Shebin El-Kom, Menoufia, Egypt. 
2  Assoc. Professor, Department of Production Engineering and Mechanical Design, 

Faculty of Engineering, Menoufia University, Shebin El-Kom, Menoufia, Egypt. 
3  Assist. Professor, Department of Production Engineering and Mechanical Design, 

Faculty of Engineering, Menoufia University, Shebin El-Kom, Menoufia, Egypt. 



171 PT     Proceedings of the 18th Int. AMME Conference, 3-5 April, 2018 

 

INTRODUCTION 

Most of the manufacturing organizations are struggling to survive in today’s highly 
competitive marketplace through adopting continuous quality improvement programs. 
Quantitative assessment of the processes performance is a key step in the 
application of improvement methodologies such as the widely used Six Sigma 
DMAIC (Define- Measure-Analyze-Improve-Control) methodology [1]. Process 
Capability Indices (PCIs) are mainly utilized to compare the natural variation of a 
process with the specification limits. Process capability analysis is critical not only for 
evaluating the current status of a manufacturing process, but also for observing the 
effects of improvement efforts. 
 
Process capability indices such as �� or process performance such as �� are 

commonly demonstrated by a histogram as well as calculations for predicting the 
number of parts out-of-specifications. Process capability analysis necessitates the 
process to be statistically in control. Thus, if any assignable cause exists, then 
corrective actions must be taken and the control chart must be revised by eliminating 
the assignable cause signal. Univariate Process Capability Indices (UPCIs) are 
applied to measure the process performance for individual quality characteristics. As 
a result of modern technology and advances in manufacturing processes, a single 
quality characteristic cannot reflect the overall quality of a product. Furthermore, the 
rapidly changed customer requirements may result in including more complicated 
features in the product design. In this context,   multiple quality characteristics must 
be assessed simultaneously using Multivariate Process Capability Indices (MPCIs). 
To measure the capability of a single quality characteristic, only the inherent variation 
in its structure is required. However, multivariate capability assessment does not only 
involve the individual variances of each quality characteristic, but the correlations 
between the quality characteristics are also considered [2]. 
 
The relation between the process variability and the specified tolerance has been 
formalized by considering the standard deviation � of the process. Producing within 
the specification limits necessitates that the distance between the Upper 
Specification Limit (USL) and Lower Specification Limit (LSL) to be equal to or 
greater than the process width. Several research work focused on the application of 
capability measures either to univariate or multivariate quality characteristics. UPCIs 
such as �� and ��� were applied to the solder bump processing and boring operation 

as illustrated in [3, 4]. Medles et. al.[5] applied the UPCIs on the electrostatic 
separation processes after using control charts to verify that the process is in 
statistical control. Liu [6] studied the performance of thermal process (hardening at 
continuous furnaces) to ensure producing components within the tolerance limits. 
Besides, univariate and multivariate PCIs have been employed to quantity the 
process performance in the manufacturing of locomotive wheels [7]. 
 
This paper demonstrates a case study devoted to the assessment of multivariate 
capability of the flare making process at Toshiba fluorescent light bulb factory of 
ElAraby Group, Egypt. The main purpose of this paper is measuring the multivariate 
capability of the process in phase � after insuring that the process is in control using 
multivariate control charts. If the process is found to be incapable or not achieving the 
desired goal, then corrective actions are recommended in order to improve the 
capability of the process. In such a case, multivariate capability must be reevaluated 
in phase �� to quantify the achieved process improvements. The ultimate objective of 
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this research is to highlight the effectiveness of multivariate capability in assessing 
the performance of multivariate processes using principal component analysis and 
joint normal distribution techniques. Essentially, this can be considered as motivating 
application encouraging quality practitioners in industry to cease dependence on 
univariate capability assessment in situations necessitate multivariate capability 
assessment. 
 
The paper is organized as follows: the subsequent section presents the general 
concepts of the multivariate control charts such as Hotelling �� and Multivariate 
Exponentially Weighted Moving Average (MEWMA); followed by a section that 
demonstrates in details the univariate process capability, provides a review of the 
multivariate process capability indices, explains how the multivariate process 
capability can be assessed using the Principal Component Analysis (PCA) technique; 
then a  section devoted to the application on the considered industrial case study with 
the results and discussions; and conclusions are highlighted in last section. 
 
 
MULTIVARIATE CONTROL CHARTS 
 
The product quality mainly relies on the joint effect of several variables instead of 
their individual contributions. Unfortunately, univariate control charts can only monitor 
a single quality characteristic at a time. Despite the ease of signal interpretation in 
these charts, it does not count for the interactions between the other variables within 
the process. However, it is a fact that in practical applications, most of the processes 
are multivariate in nature. When these variables are correlated, multivariate control 
charts are more appropriate to monitor these variables simultaneously [8]. The most 
widely used multivariate control charts are Hotelling �� that is devoted to detect large 
shifts in the process and MEWMA that is faster and more sensitive in detecting small 
shifts. 
 
Generally, the main issue in multivariate control charts is the interpretation the out-of-
control signals, i.e., the identification of which variable or variables are responsible for 
the out-of-control signals. However, univariate control charts and decompose 
approach are helpful methods that can be used to overcome this problem and these 
have been used in this work for explaining the out-of-control signals resulted in the 
Hotelling �� and MEWMA charts. For more illustration, one may refer to the previous 
work of the authors of this paper [9]. 
 
Hotelling �� control chart is the most popular chart in the conventional multivariate 
process monitoring and control. It is applied for monitoring the mean vector of the 
process. It integrates multiple correlated variables together which are Independent 
and Identically Distributed (IID) and also correlated. In case of unknown parameters, 
assume the multivariate normal distribution with unknown mean vector 	 and 
unknown covariance matrix Σ. The values of �� and  that are estimated from the 
preliminary data are substituted for 	 and	Σ. The test statistic of the Hotelling �� is 
shown in (1), as illustrated in [10]. 
 �� = �(�� − ��)���(�� − ��)                                              (1) 
 

The mean of each subgroup is defined by	��, the mean of all subgroups is denoted 

by	��, the variance-covariance matrix denoted by , and � is the number of 
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observations in subgroup (size of subgroup). Hoteling �� control chart is normally 
implemented in two phases. The phase � analysis is sometime called a retrospective 
analysis and the control limits for this phase are illustrated in (2). Moreover, phase �� 
control limits are constructed using (3). These equations were illustrated in [10]. Note 
that  � is the number of preliminary subgroups, � is the number of variables, and � is 
the type � error. ��� = �(���)(���)��������  !,�,��������										��� = 0																																																										                               (2) 

 ��� = �(���)(���)��������  !,�,��������											��� = 0																																																										                               (3) 

 
The MEWMA control chart is more sensitive than the Hotelling �� for detecting small 
shifts in the process. This chart operates by determining the statistic ��, that 
illustrated in (4) and the parameters of this equation are calculated using (5) and (6) 
[10]. �$� = %$�&'(��%$                                                        (4) 

 %$ = )�$ + (1 − ))%$��                                         (5) 
 '( = ,��, -1 − (1 − ))�$.&                                     (6) 

 
where, '$ is the covariance matrix, ) is the weight assigned to the current 
measurement (0 < ) < 1), and 0 is the sample number. Denote that the	%1 = 2345. 
Since the statistic �� is always non-negative, only the UCL is needed to work with 
this chart. As the covariance of %$ ('$) relies on the considered number of samples, 
the UCL will also depends on 0. The upper control limit becomes narrow at the initial 
start of the MEWMA chart and increases with	0. The upper control limit of this chart is 
shown in (7), which illustrated in [11]. 
 

���$ = � 6,(��(��,)7()�(��,) 8� �⁄
                                      (7) 

 
After running the EWMA control chart for several times, the variances and upper 
control limit will approach a steady state value given as (8), and (9), respectively. 
 '( = & 6 ,�(��,)8                                                     (8) 

 ��� = � 6 ,�(��,)8� �⁄
                                               (9) 

 
 

PROCESS CAPABILITY 
 
Basically, a process capability may be specified by the range that bounds all the 
possible values of a particular quality characteristic resulted from the process under 
certain conditions [12]. Besides, Process capability indices (PCIs) are defined to 
compare the process natural variation with the specification limits of the product 
quality characteristic. This comparison can be realized by dividing the spread 
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between the process specifications over the spread of the process values as 
measured by six process standard deviation units for normally distributed processes. 
Practically, the use PCIs is more convenient in assessing the process performance 
as it helps in  reducing the multifaceted information related to a process to a single 
measure [13]. 
 
For instance, process capability index (��) is developed to quantify the ratio between 

the overall process variation and the specified manufacturing tolerance. It just relates 
the process capability to the specification range, but it does not relate the location of 
the process with respect to the specifications. Hence, it is called the potential 
capability index. However, another capability index (���) is called the actual process 

capability index [14]. The value of ��� relative to �� represents a direct measure of 

the process off-centering effect. As a general rule, if process distribution is centered 
between the specification limits, the value of ��� will be similar to the �� value. 

Furthermore, the actual process capability index ��� is commonly applied as it 

measures how far is the average of a process from the closer specification limit in 
terms of 3� distances. Besides, Table 1 demonstrates the equations that can used to 
estimate the different UPCIs as well as their usage. 
 
Many authors such as [15-19] developed and presented multivariate process 
capability indices for assessing the capability of the process. Wang and Du & Wang 
and Chen [17, 19] proposed multivariate extension for ��, ���, ���, ;�<	���� based 

on the principal component analysis, which transforms number of originally related 
measurement variables into a set of uncorrelated linear function. The principal 
component analysis technique can be used to assess the capability of any 
manufacturing process as long as it has multiple related variables. This technique 
was applied by many authors in many different situations such as Xekalaki and 
Perakis [20], Shinde and Khadse [21], and Perakis and Xekalaki [22]. Chan et. al. 
[15] introduced a version of the multivariate process capability index ��� or 

multivariate normal case. This index takes into account both the proximity to the 
target and the variation observed in the process. In addition, it explains the shape of 
bivariate specification for independent, dependent uncorrelated, and correlated 
variable cases. Multivariate capability index defined as a ratio of two volumes R1 and 
R2, where R1 is a modified tolerance region and R2 is a scaled 99.73% percent region 
or elliptical region under the normality assumption [18]. 
 
Chen [16] proposed a multivariate process capability index over a rectangular solid 
tolerance zone. Then, it proceeds to deal with a general type of tolerance zone, 
which includes rectangular solid as a special case. The multivariate capability vector 
[���, PV, LI] consists of three components. The first one is a ratio of areas or 

volumes which is equivalent to the lengths ratio in the ��. The second component 

represents the significance level PV of the observed value with the Hotelling’s 
statistic 	��. Whereas, the third component LI takes a value of  0 or 1 [18]. 
Furthermore, a recent review of multivariate and univariate process capability indices 
is provided in [23]. 
 
Wang and Du [17] proposed a process performance indicator for multivariate data 
using principal component analysis (PCA). This method is capable of reducing the 
number of = variables to a fairly fewer set of k-derived variables that preserves most 
of the information in the original = variables [24]. Beltran [25] explains the procedure 
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of PCA as it is the most effective technique that can be applied to transform a set of 
correlated variables into a set of liner combination of uncorrelated variables that 
account for decreasing proportions of the variation of the original observations. One 
of the advantages of the PCA technique is that it is readily available in most of the 
software packages and it is a well-established technique in statistical multivariate 
analysis, as well. In addition, the application of PCA does not necessitate the 
multivariate normal assumption. The ith principal component defined as in (10). Note 
that, U is composed of the columns of U1, U2 … Um, which are the eigenvector of 
covariance matrix S, and x is the vector of the observations on the original variables. 
The specification limits and target value of PCi are defined in (11). The multivariate 
process capability index can be simply determined by (12), and (13). In addition, Cp; 
PCi can be replaced by Cpk; PCi or Cpm; PCi. 

 ��$ = �>	?	,								0 = 1, 2, … ,�                                           (10) 
 

B���C$ = �$>��																					���C$ = �$>��																				��C$ = �$>	�,			0 = 1, 2, … ,�                                              (11) 

 D�E � = F∏ �H�; ��$�$J� K� �L
                                                   (12) 

 �H�; ��$ = (���C$ − ���C$) 6�C$�⁄                                             (13) 

 
On the other hand, Joint normal distribution (JND) technique can be employed to 
assess the multivariate process capability, but it operates only under the assumption 
that the data is coming from normal distribution. Mainly, JND procedure determines 
the probability that the items characterized by two or more variables meet established 
specifications limit. Particularly, in case of correlated variables, it is critical to consider 
their joint behavior as illustrated in [26]. Because of looking at each variable 
individually may result in a misleading depiction of the overall process capability. 
 
 
CASE STUDY 
 
The case study presented in this paper has been accomplished through the 
investigation of the Toshiba straight fluorescent light bulb production line at El-Araby 
Group. The factory is located in Kofor El Ramel, Quesna Industrial City, El-Menoufia, 
Egypt. The manufacturing process has been analyzed and it has been found that the 
flare making process is a critical step in the manufacturing process as it has a 
significant effect on the defect rates. In this paper, the main target is to assess and 
improve the multivariate capability of the flare making process using multivariate 
statistical process control techniques and multivariate process capability analysis. 
This paper depends on the previous work conducted and published by the same 
authors of this paper as  illustrated in [9], which presents monitoring the dynamic 
behavior of the flare making process using multivariate control charts. In addition, 
decompose approach was used to interpret the out-of-control signals, and 
Autoregressive Integrated Moving Average (ARIMA) models have been applied to 
reduce the effect of the dynamic behavior. In flare making process, the variables to 
be monitored are flare diameter, stem diameter, flare height, and temperature. 
However, the output variables which are considered in the process capability 
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assessment are flare diameter with specification limits 25.5±0.5 mm and flare height 
with specification limits 22±0.5 mm. 
 
Multivariate Control charts (Phase I) 
 
Multivariate Hotelling �� is constructed for residual data as illustrated in Fig. 1. 
Besides, Table 2 demonstrations the actual correlation among residual variables. 
Hotelling �� chart illustrated in Fig. 1 reveals that the process has failed out at 
samples 6 and 22. The flare diameter variable is responsible for the out-of-control 
signal in sample 6 and stem diameter variable is responsible for the signal in sample 
22. By investigating the process, it has been found that these signals are due to 
stopping and restarting the process during data collection. Therefore, the causes of 
out-of-control signals have been identified as assignable causes in these samples 
and have been eliminated. Thus, Hotelling �� control chart is revised as illustrated in 
Fig. 2. Revised Hotelling �� control chart reveals that the process become in-control. 
These charts and the procedure to interpret the out of control signals were illustrated 
in reference [9]. 
 
Univariate and Multivariate Process Capability (Phase I) 
 
The primary step in the process capability assessment is checking the normality 
assumption of the data in order to assure the accuracy of the calculations. In this 
paper, the Shapiro-Wilk test examines how closely the points fall along a straight line 
on a normal probability plot. If the smallest P-value for the Shapiro-Wilk test 
performed is less than 0.05, then the normality assumption is violated at 95% 
confidence limit. Figures 3 and 4 show the probability plot for flare diameter and flare 
height; respectively. Flare diameter and flare height have p-values 0.75198 and 
0.2387; respectively. Therefore, the assumption that the flare diameter and flare 
height come from normal distribution cannot be rejected. 
 
Univariate process capability was applied on the revised flare diameter and the 
revised flare height. For the flare diameter with specification 25.5±0.5mm, it has been 
found that all the values of process capability indices are less than one (��=0.81 and ���=0.62). Therefore, the process is incapable of producing flare diameter within 

specification. However, the process is capable of producing the flare height within the 
specification limits (22±0.5mm), as the results indicate that ��=1.42,  and ���=1.34. 

 
Joint normal distribution technique is applied to determine the percentage of items 
outside a set of multivariate specification limits. In the considered case, the estimated 
frequency of non-conformities with respect to at least one of the two variables equals 
33324.3 per million (DPM). Table 3 illustrates the result of the capability test. 
Besides, Fig. 5 reveals that the process is beyond the USL and LSL in the direction 
of flare diameter. However, the flare height is within the specification limits. 
 
Principal component analysis (PCA) technique was employed for assessing the 
multivariate process capability using the variance-covariance matrix that is illustrated 
in Table 4 to estimate the eigenvalue and eigenvector for each component. 
 
Equations 14 and 15 can be constructed from concluded eigenvector from the 
analysis of variance covariance matrix. The eigenvalue of the first principle 
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component equals to 0.044273 and it contributes by 78.5% of the overall variance of 
the data. In the meanwhile, the second one equals to 0.012103. 
 ��� = 0.975 ×  S;43	<0;�3T34 + 0.224 ×  S;43	ℎ30WℎT                     (14) 

 ��� = −0.224 ×  S;43	<0;�3T34 + 0.975 ×  S;43	ℎ30WℎT                   (15) 
 

Analysis of multivariate process capability using PCA for phase � indicates that the 
overall potential process capability (D��) equal to 0.95 and the overall actual 
multivariate process capability (D��X) equal to 0.75. Furthermore, the overall defect 
part per millions equals to 33324. Analysis of multivariate process capability reveals 
that the overall process capability is less than one. Therefore, the process is 
incapable to produce flare diameter within specification limits. Consequently, 
corrective actions must be taken to improve the capability of the process. The main 
purposes of these corrective actions are to reduce the variability in the flare diameter 
and make sure that the center of the process is close to the target values. The 
corrective actions that have been carried out practically on the flare making process 
involve the following: cleaning all the burners regularly before feeding the stem to the 
machine in order to stabilize the temperature during the production, changing the 
pins and sleeves of the mechanism that produces flare diameter more frequently, and 
finally, adjusting the stroke of the cam mechanism in order to achieve the target of 
flare diameter (Target= 25.5 mm). After implementing the corrective actions, another 
data set has been collected from the process to evaluate the effect of process 
improvements. 
 
Multivariate Control charts (Phase II)  
 
After taking the corrective actions, multivariate control charts must be constructed to 
verify that the process is in-control before assessing the process capability. Hotelling �� and MEWMA control charts reveal that the process is in-control as displayed in 
Figs. 6 and 7. Where, MEWMA control chart has a parameter ) equals to 0.2. 
 
Univariate and Multivariate Process Capability (Phase II) 
 
Normality test for flare diameter and flare height reveals that the flare diameter data 
has P-value equals to 0.00291446 (i.e., flare diameter is non-normally distributed). 
Therefore, Johnson transformation technique is used to convert the data of the flare 
diameter to normal. Johnson transformation technique is used to produce normally 
distributed variables with approximate mean (	) =0 and approximate standard 
deviation (�) =1 in order to be more accurate in determining the capability indices. 
Fig. 8 shows the Johnson transformation for flare diameter. The P-value of flare 
diameter after transformation increased to 0.604951.  

 
The univariate capability indices assessed during phase �� are presented as follows: 
for the transformed flare diameter variable the values become ��=1.27 and ���=0.7, 

while for the flare height variable they become ��=1.31 and ���=1.12. Univariate 

capability analysis indicates improvements in the process as the performance of the 
flare diameter has been significantly improved than before. 
 
In multivariate process capability techniques, JNDT illustrates that the process has 
been improved and the overall defect part-per-million has been decreased to 18419.2 
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as shown in Fig. 9. Analysis of multivariate process capability using PCA after 
corrective actions indicates that the overall potential process capability (D��) equals 

to 1.1 and the overall actual process capability (D���) equals to 0.91. Tables 5 and 6 

illustrate the eigenvalues and eigenvectors for each principal component; 
respectively. 

 
 
CONCLUSION 
 
This paper has been devoted to the assessment and improvement of multivariate 
capability of the flare making process at Toshiba fluorescent light bulb factory of 
ELARABY Group, Egypt. To do so, multivariate control charts have been constructed 
and these reveal that the process in phase � is out-of-control. However, process 
capability assessment requires the process to be in a state of statistical control. 
Therefore, the Hotelling �� control chart developed in phase � was revised after 
identifying and eliminating its out-of-control signals. The multivariate process 
capability indices estimated in phase � reveal that the process is incapable to 
produce parts within specification limits. After carrying out some corrective actions in 
phase	��, it has been observed that there is no indication of out-of- control signals 
and the process capability has been significantly improved.  
 
The presented application emphasized the effectiveness of the multivariate capability 
in assessing the performance of multivariate processes using principal component 
analysis and joint normal distribution techniques. Besides, this application may 
encourage the quality practitioners in different industries to start ceasing the 
dependence on univariate capability assessment for manufacturing process having 
multiple related variables. Instead, the results demonstrate that MPCIs can help in 
appraising the current status of the process as well as evaluating the improvement 
efforts through an overall assessment of the process performance regardless of the 
fluctuations in the individual capabilities of its variables. In the considered case study, 
improvement efforts have resulted in decreasing the defect rate from 33324 DPM to 
18419 DPM. In addition, the potential multivariate process capability index (D��) has 

improved from 0.95 to 1.1, while the actual multivariate process capability index 
(D���) has improved from 0.75 to 0.91. Analysis of the process capability reveals 

that the  D�� has improved by 15.8% and D��� has improved by 20%. It means that 

the corrective actions that have been taken reduced the variability in the process by 
15.8% and the center of the process become closer to the target of the specifications 
by 20% than before.  
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Fig. 1. Hotelling �� control chart for four residual variables. 
 

 
 

Fig. 2. Hotelling �� control chart for revised data. 
 

 
 

Fig. 3. Probability plot for flare diameter. 
 

 
Fig. 4. Probability plot for flare height. 
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Fig. 5. Top view of the 3D effect for two variables in phase I. 
 

 

 
 

Fig. 6. Hotelling �� control chart for phase II. 
 

 
 

Fig. 7. MEWMA control chart for phase II. 

 

Fig. 8. Johnson transformation technique for flare diameter. 
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Fig. 9. Top view for the 3D effect for two variables in phase II. 

 

 
Table 1. The equations of UPCIs. 

 

Index Estimation Equation Usage 

�� �� = �� − ��6�́  

It estimates what the process is capable of 
producing if the process mean is to be 
centered between the specification limits. 

 

��Z ��Z = �� − ��3�́  
It estimates process capability for specifications 
that consist of a lower limit only. 

��[ ��[ = �� − ��3�́  
It estimates process capability for specifications 
that consist of an upper limit only. 

��� ��� = D0�	(��Z, ��[) It measures how far the process mean is from 
the nearer specification limit. 

 
 
 

Table 2. The correlation among residual variables. 
 

Variables 
Characteristics 

Flare 
diameter 

Stem 
diameter 

Flare 
height 

Stem 
diameter 

Correlation 0.383 
  

P-value 0.000 

Flare height 
Correlation 0.071 -0.054 

 
P-value 0.433 0.553 

Temperature 
Correlation -0.030 -0.110 0.153 

P-value 0.742 0.221 0.088 

 
 



184 PT     Proceedings of the 18th Int. AMME Conference, 3-5 April, 2018 

 

 
Table 3. Estimated frequency of non-conforming the specification. 

 

Variable 
Estimated Beyond 

Spec. 
DPM 

Flare diameter 3.32938 % 33293.8 

Flare height 0.00325184 % 32.5184 

Joint 3.33243 % 33324.3 

 
 

Table 4. Variance covariance matrix. 
 

Variables Flare diameter Flare height 

Flare diameter 0.0426592 0.0070231 

Flare height 0.0070231 0.0137173 

 
 

Table 5. Eigenvalue for each principal component. 
 

Component 
Number 

Eigenvalue 
Percent of 

variance 

Cumulative 

percentage 

1 0.018616 54.3% 54.3% 

2 0.015674 45.7% 100% 

 
 

Table 6. Eigenvector for each principal component. 
 

Components 
Variables 

PC1 PC2 

Flare diameter 0.926 -0.377 

Flare height 0.377 0.926 

 

 
 


