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Abstract Iron alloying element addition to pure titanium can be used to enhance strengthening 

as well as β-phase stabilizer. However, the outcome depends on the processing route to some 

extent. Mechanical alloy technique is adapted in this work to produce titanium alloys with 

7wt% iron content and 1wt% Aluminum. The obtained nano-size particles have two phases α 

and β structures and the formation of the second β-phase is mainly enhanced by the milling 

force. Heating the produced grain compacted powder to a temperature above the beta phase 

transus temperature followed by quenching to ambient temperature resulted in α-martensite 

partial transformation. This result can indicate that the obtained β-phase for the present alloys 

is not fully stabilized by the iron additions. 

1. Introduction  

The Ti-6Al-4V (in wt.%) is one of the most widely used alloys for aircraft high performance 

automobiles and biomedical prosthesis. This alloy has a dual phase microstructure α and β at room 

temperature [1]. The aluminum addition to this Ti-base alloy is intended to stabilize the hcp α-phase 

and increase the strength whiles the vanadium to introduce a second β-phase to the microstructure and 

enhance both ductility and toughness. However, for medical applications vanadium is cytotoxic and 

it′s also an expensive element [2-6]. Also, titanium alloys such as Ti-6Al-7Nb, Ti-5Al-2.5Fe and Ti-

6Al-4V still contained Al which has been suggested to cause osteolysis and neural disorders such as 

Alzheimer′s disease [7, 8]. 

Recently Ti-based alloys with up to 7wt.% Al and a small addition of Fe that doesn′t exceed the 

2wt.%have been developed with the aim of reducing the cost and maintaining mechanical properties 

and biocompatibility to a level close to Ti-6Al-4V alloy[9]. Substitution of vanadium in Ti-6Al-4V 

with iron and niobium did not significantly affect the electrochemical behavior[10]. The amount of 

formed β-phase in the microstructure relative to α phase depends not only on alloy composition but 

also on the processing conditions and subsequent treatment. Furthermore, the volume fraction of β 

phase has been reported to increase with strain during superplastic deformation, where stress induced 

transformation take place[11]. The deformation behavior of β-Ti alloys is shown to be strongly 

dependent on the degree of the β-phase stability [12]. The deformation mechanism changes from slip 

deformation to deformation twinning and/or martensitic transformation with decreasing the β phase 

stability. The stress-induced martensitic transformation βα′′(orthorhombic) is not stabilizing 

alloying elements dependent but also stress level can have a determining role [13]. 
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2. Material and techniques 

Ti-Fe-Al alloys were prepared from the constituent elements Ti, Fe, and Al with purity grades higher 

than 99.9%. In the mechanical alloying process, the required mixture and hardened stainless steel balls 

were loaded together into a water-cooled stainless steel pot under argon atmosphere at speed of 500 

rpm with 1:20 powder to ball ratio. The process was stopped almost each one hour to keep the milling 

temperature close to room temperature. The green compacted mechanically alloyed powder particles 

have been solution treated at 950 and 1100
ᵒ
C under argon atmosphere and followed by water 

quenching to examine structure thermal stability and sintering tendency. 

XRD analysis was performed using a Siemens D5000 powder diffractometer equipped with Cu Ka 

radiation (wavelength = 0.15406 nm) with a nickel filter at 40 kV and 30 mA. Thermal analysis was 

performed in the temperature range from 25 to 1100
o
C using a AT instrument SDT Q600, with heating 

rate 10 K/min. The microstructure features of the samples have been investigated using a Field-

Emission Scanning Electron Microscopy Quanta FEG 250and Transmission Electron Microscopy 

JEOL TEM-2100. Sample composition was analyzed by energy dispersive X-ray spectroscopy (EDX). 

 

3. Results and discussion 

Mechanical alloying is a solid-state powder processing technique involving repeated welding, 

fracturing, and rewelding of powder particles. In this process, the mixture of microcrystalline pure Ti, 

Fe, and Al elements, with alloy composition of Ti-7Fe-1Al weight percent were milled as a function of 

mechanical alloying time up to 12 hours. The typical XRD pattern of the mixture before and after 

milling time is shown in figure 1. The original shape lines of all elements gradually became broader 

and their intensity decreases with milling time. The partial formation of Fe and Al solid solution in the 

α-Ti matrix can be deduced from such decreases in intensity of X-ray peaks for both Fe and Al. Since 

the powder particles are subjected to severe plastic deformation, high density of defects generated and 

subsequently a distortion in the formed solid solution crystal structure are to be expected. 

 

Figure 1. XRD patterns of Ti-7Fe-1Al up to 12 hours of ball milling. 

 

The original XRD patterns contains mainly the α-Ti phase which completely matched with the 

JCPDS-ICDD standard cards number (44-1294), in additions to two small in intensity peaks for both 
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Al (65-2869) and/or Fe (01-1267). After 4 hours of milling, these two extra lines from Fe and Al 

disappear which can be attributed to the deformation process, the refining of the microstructure and/or 

to the possible formation of a supersaturated solid solution in the α-Ti matrix. Peak broadening 

continues with milling time representing the refinement in the particles structure and an increase of the 

internal strain. The line (101) of alpha phase has been shifted to lower angle values with milling time 

and resulted in differences in Δd = 0.0442nm decrease after 4h milling. This might suggest an 

interface orientation relation between α and β-phase mainly α-(101) and β-(110). 

 

During milling process, both iron and aluminum penetrate in Ti simultaneously leading to increases in 

Fe/Al concentration ratio in newly formed phase as suggested by the different elements mapping for 

their distribution, figure 2. The Al-element appears almost homogeneously distributed in the whole 

area, figure 2b, however iron distribution seems to be high concentrated in the lighter zone of the iron 

map, figure 2d, the higher iron concentration zone corresponding to the β-phase and a rough 

estimation of the volume fraction of this phase particles to be around ≈ 10% at this stage of milling. 

Therefore, such observation confirms the β-phase presence in addition to α-phase matrix. This also 

suggested that the nano-particles β-phase originated from the supersaturated Al/Fe solid solution in 

titanium. 

 

The degree of crystallinity to amorphization formed in the structure can only be conformed using 

TEM investigation. TEM analysis of mechanically alloyed powder indicated the presences of nano-

crystalline phase. As shown in figure 3, the diffraction pattern indicates the presence of randomly 

oriented nano-crystal. The pattern also consists of rings sampling all possible planes. Further, the 

micrographs confirmed the nano-particles microstructure and the spot arranged in circles suggests the 

presence of high angle-boundaries in ultra-fine structure. The diffuse characteristic of the spots is a 

strong indication of the lattice distortion associated with milling stress. The destabilization of the 

crystalline phase is thought to occur during mechanical alloying by increasing the free energy due to 

the accumulation of structural defects such as vacancies, dislocations, and grain boundaries. The 

continuous refinement in grain size is therefore increasing the boundaries area and lattice expansion 

could also contribute to increasing the free energy of the deformed phase. 

 

A differential thermal analysis DTA test was carried out for Ti-7Fe-1Al mechanically alloyed powder 

sample in a range of temperatures up to 1100
ᵒ
C, as shown in figure 4. Two exothermic peaks are 

observed at 120 and 325
ᵒ
C. Both peaks could be attributed to annealing the high concentration of 

defects, associated with the milling process. Further heating to a relatively higher temperature resulted 

in the formation of an endothermic peak at ≈ 786
ᵒ
C which can be associated with the possible 

allotropic transformation of α→β phase change. Such a transformation is generally known to occur at 

882
ᵒ
C for pure Ti and the decrease of this transition temperature is mainly due to the presence of 

alloying elements, Fe and Al and additional reduction could be due to the small powder particle size 

used for the test compared to the bulk compacted specimen. Since the starting powder for the thermal 

test is mainly composed of α+β phases, therefore the amount of β is expected to increase with heating 

and a fully single β phase would be reached passing the 786
ᵒ
C temperature. 
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Figure 2. (a) SEM image of the as-milled sample Ti–7Fe–1Al alloy and its X–ray element distribution 

maps: (b) Al, (c) Ti, (d) Fe and (e) EDX 
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Figure 3. TEM micrographs of Ti-7Fe-1Al after 6 hours of ball milling. 

 

 

Figure 4. DTA curve for Ti-7Fe-1Al mechanically alloyed powder sample. 

 

In the binary equilibrium diagram for Ti-Fe [14, 15], a temperature of ≈ 826
ᵒ
C for fully β-phase 

with 7wt.%Fe, which is 40
ᵒ
C more than the measured one, indicates a possible enhancement of α→β 

transformation by stored energy during milling. In that case, the Fe lean α phase loses its iron content 

to further stabilize the high temperature β-phase. High temperature binary Ti-Fe system shows a 

eutectic reaction at 1085
ᵒ
C in the Ti side of the diagram, similar exothermic presuming due to the 
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eutectic reaction but occurs at slightly lower temperature of 1041
ᵒ
C. On the other hand, there is 

another eutectoid reaction at 595
ᵒ
C of β→α+TiFe, but no trace of such reaction is observed on the 

thermal diagram. The suppression of the eutectoid reaction and consequently the formation of the 

intermetallic TiFe phase has been reported by several works assuming kinetic reasoning for such 

changes [16]. 

The α-Ti phase is known to have low symmetry (hcp) structure which lack sufficient independent 

slip system when compared to Ti-β phase with (bcc) symmetry. The amount of newly formed β-phase 

in the present ternary system at early stage of milling will continue to generate a high rate of 

dislocation during milling. The formed dislocations are not expected to pass through the α-phase and 

accumulate at the interface between α/β phases, creating a large stress concentration at the interface 

resulting in a stress gradient from the interface to α-grain interior. Such condition can enhance the 

diffusion flow mainly for the fast diffusion element Fe. The iron migration from the interface to the 

interior of α phase, will enrich α phase with iron atoms with the subsequent effect of increasing the 

structure instability and compel α phase to transform to β-phase. This transformation starts at the 

interface and gradually extends to grain interior with strain. Further, the high stress concentration 

formed at the interface will significantly increase the Gibb′s free energy in addition to the enrichment 

by Fe atoms will eventually cause a high order of lattice instability of the α phase near the interface. 

Transformation from α to β phase to reduce the rise in free energy will occur gradually and depend on 

both Fe diffusivity and the amount of strain produced at the interface. Similar trend of result has been 

observed with Ti-Al-Fe alloy but at lower iron content [11, 17]. Thermal stability of the pre-milled 

alloys was examined at of 950 and 1100
ᵒ
C for different holding times. X-ray diffraction patterns 

indicated that, the 950
ᵒ
C quenched samples transformed to α′-Ti phase. The intensity of the peaks 

corresponding to α′ phase decreases for the 4hrs milled sample while 6 hrs milled sample quenched 

from 950 shows α′ and α′′-Ti phases formation. Also, the 1100
ᵒ
C quenched sample indicate that, the 

α′′-martensitic phase is the dominate structure. 

 

The microstructures of the Ti–7Fe-1Al without milling shows α′-martensite phases formation. 

According to XRD results, increasing milling time leads to the significant increasing in the amount of 

α′′-phase after quenching, hence β phase mostly not found. The quantity of α′ phase is decreased with 

milling time. The length of the longest martensitic plates was about 30.6 μm. Only primary and 

secondary martensite plates are visible in figure 6. Figures 7 and 8 show SEM image of the quenched 

samples from 950 and 1100
ᵒ
C, a nano size particle appeared to dominate the microstructure in addition 

to porosity. SEM observation indicated that the times for isothermal holding up to two hours at both 

selected temperatures were not enough for the green compacted particles to rich a complete 

densification microstructure. The porosities in the obtained microstructures are observed to decreases 

with both times and temperatures of the thermal treatment and they are mainly located along the 

particles boundaries and some appears interconnected with irregular shape as shown in figure 6. It 

therefore possible to suggests that the thermal energy during this early stage of particles sintering is 

mainly spent in the alloying elements diffusion for α + β  β transformation, rather the compact 

densification. The diffusivity and solubility limit of alloying elements in the high temperature β-phase 

which dictate the kinetic of densification process. As previously indicated the iron has a high 

diffusivity in titanium and mainly in β-phase which will enhance the alloys sinterability. On the other 

hand, this high diffusivity of iron can be responsible for the formation of Kirkendall porosities the 

titanium matrix. 
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Figure 5. XRD patterns of as-quenched Ti-7Fe-1Al from 950
ᵒ
C (b) without milling, (c) 2 hrs, (d) 4 hrs 

and (e) 6hrs, and from 1100
ᵒ
C (f) 6hrs, compared with initial α-Ti (a) 

 

 

Figure 6. SEM of Ti-7Fe-1Al without milling quenched from 950
ᵒ
C. 
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Figure 7. SEM of 4hrs milled sample Ti-7Fe-1Al quenched from 950
ᵒ
C. 

  

Figure 8. SEM of 6 hours milled Ti-7Fe-1Al quenched from 1100
ᵒ
C. 

 

A volume contraction is observed following the solution treatment indicating the start of 

densification process however it is not completed due to the relatively short isothermal holding times; 

between 1 and 2 hours before quenching. In this process of the solid solution above β transition 

temperature the primary effect will be to enrich the β-matrix with β-stabilizing elements, mainly Fe. 

The high residual strain produced by the previous milling process is expected to enhance densification 

for nano particles of the compacted powder in addition to accelerating any expected diffusion process 

of particle growth. Moreover, at the higher solution treatment temperature of 1100
ᵒ
C, the presence of 

Fe will lead to the formation of a eutectic reaction at 1085
ᵒ
C leading to an increase in the alloy 

sinterability due to the transient liquid phase formation. Furthermore, the diffusivity of Fe in β-Ti is 

known to be higher than that in α-Ti and can lead to a fast decomposition of α-phase and the formation 

of the single β-phase above Tβ. The presence of Al in the alloy composition is not likely to contribute 

to improvement of sintered density since it has been suggested that a partial Ti-Al diffusion can lead to 

a residual pore formation. On the other hand, Al-addition has been shown to act as β-stabilizing 

elements, but only with single β-Ti phase [18]. 

XRD results of different solution treated samples at 1100
ᵒ
C showed that the quenching to room 

temperature produced a β→α′′ martensitic transformation. However, the intensities of α′′-lines are less 

strong at higher Fe content alloys with a few lines of β and even α-phase. This could be an indication 

that the higher Fe-content is more stable than the lower one and therefore, the metastable β-structure 

with lower Fe-content is expected to give more martensitic transformation. Similar results were 
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obtained after specimens treated at 950
ᵒ
C, however it appears that a different quenching rate has a 

considerable effect on martensitic volume fractions. In that respect, the change in quenching rate is 

expected to create a change in the degree of solute partitioning during cooling. 

The phase stability indicators parameter calculated for present alloy composition and shown in 

table1 predicted the formation of the β-stable and/or near β-phase to occur during processing. Since 

the fully β-stability is associated with retarding the displasive phases at room temperature by 

quenching. The absence of such results is considered as discrepancies to experimental and calculated 

parameters. Such discrepancies can be attributed with a possible shift of the boundary between the 

phases with ternary content of alloying elements. Moreover, the additive effect of each alloying 

element on titanium may need to be reconsidered and replaced by interactive form between trio-

elements electronic structures. It has been generally indicated that the finer the parent phase grain size, 

martensite will form easier and would be thus in a more stable condition. Also, refinement of grain 

size could lead to an increase in the transformation temperatures and in a more general term, the effect 

of the stored energy due to milling process will reduce the temperature for recovery, recrystallization 

and grain growth. 

 

4. Conclusions 

The milling of the titanium base alloys showed a nanosize double phase α and β with particles size 

been iron content dependent. The accumulated stored energy during milling is partially enhancing the 

second β-phase formation in the α-matrix. TEM observation of milled powder confirm the presence of 

a nanocrystalline microstructure with high angle boundaries. The thermal stability of the pre-milled 

particles in a grain compacted form undergoes a martensite type of transformation α-phase with 

orthorhombic structure following the quenching from a temperature above the beta-transus 

temperature. Such transformation is considered as an indication that a full β-stable phase is not 

reached with the present iron content in titanium base alloy but rather a β metastable phase is obtained. 
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